Q. P. Code: 38831

1T01013 - S.E.(ELECTRONICS & TELE-COMMN)(Sem III) (CBSGS) / 49601 - ANALOG ELECTRONICS - I

(3 Hours)

(Total Marks: 80

- N.B.: (1) Question **No. 1 is compulsory**.
 - (2) Solve any three questions from the remaining five
 - (3) Figures to the right indicate full marks
 - (4) Assume suitable data if necessary and mention the same in answer sheet.

Q.1 Attempt **any 5** questions

[20]

- a) Draw switching characteristics of a diode and explain the reverse recovery time.
- b) Calculate V_{CEQ} for the common base circuit shown in Fig. 1b if the transistor parameter is β =120

Fig. 1b

- c) Draw small signal model of JFET and explain the significance of each parameter.
- d) Compare CE, CB and CC configuration.
- e) Draw small signal hybrid pi model of BJT including early effect.
- f) What are the Barkhausean's criteria for sustained oscillation?
- Q.2 a) Draw the output of the clipper circuit shown in Fig. 2a, If a sine wave of 15sinot is applied as an input. Assume practical diode with suitable cut in voltage.

- b) Derive the expression for frequency of oscillation for a Wein Bridge [10] oscillator
- Q.3 a) Find I_{DQ} , V_{GSQ} , V_D and V_S for the circuit shown in Fig 3a [10]

TURN OVER

Q. P. Code: 38831

2

- b) Explain the construction and characteristics of n channel Enhancement [10] MOSFET. Draw transfer and drain characteristics.
- Q.4 a) Derive expressions for voltage gain, input resistance and output resistance [10] for source follower circuit using n channel MOSFET Fig.4a
 - b) Determine the hybrid pi parameters for the circuit shown in Fig 4b. The transistor parameters are $V_{BE (on)} = 0.7 \text{ V}$, $\beta = 100 \text{ and } V_A = 100 \text{ V}$.

Q.5 a) For the circuit shown below in Fig.5b, the transistor parameters are $V_{BE (on)} = 0.7 \text{ V}$, $\beta = 140 \text{ and } V_A = \infty$. Determine Z_i , Z_o and A_V

- b) Draw and explain energy band diagram of MOS capacitor in accumulation, depletion and inversion region. [10]
- Q.6 Short notes on: (Attempt **any four**)

[20]

- a) Construction and operation of schottky diode
- b) LC oscillators
- c) AC and DC load line
- d) Small signal equivalent circuit of CC amplifier
- e) Regions of operation of FET