(3 Hours)
[Total Marks:80]
N.B. (1) Question no. 1 is compulsory.
(2) Attempt any three questions from Question No. 2 to 6
(3) Make any suitable assumption wherever required.
Q. 1 Answer any four.
(a) Give the working principle of Photodiode with its application 5 M
(b) Explain the various bias compensation techniques in a BJT. 5 M
(c) Determine the operating point parameters $I_{C Q}$ and $V_{C E Q}$ for the Fixed Bias circuit. 5 M Assume $\beta=100$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=470 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}$..
(d) Explain the Effect of negative feedback on voltage gain, input impedance, output 5 M impedance, and bandwidth.
(e) State and Explain Barkhausen's criteria for sustained oscillations.
Q. 2 (a) Analyze Voltage Shunt Negative feedback Amplifier with respect to Input 10 M
(b) Derive expression for voltage gain, input impedance and output impedance of a 10 M CS amplifier.
Q. 3 (a) Draw FWR with C filter and describe the circuit operation with waveform. 10M Compare the performance of C, L, LC filters
(b) Explain the Colpitts Oscillator in detail with circuit diagram and equations.
Q. 4 (a) Explain Crystal oscillator with the help of suitable diagram and waveforms. 10 M
(b) Give the DC and AC analysis of Dual Input Unbalanced output differential 10 M
Q. 5 (a) Explain the Construction and Working of E-MOSFET with the help of its 10 M characteristics.
(b) Explain various types of coupling and their effect on the performance of BJT. 10M
Q. 6 Write short note on following. (Any TWO) 20M
(a) Zener Diode as voltage Regulator.
(b) Hartley Oscillator.
(c) re-model used in Transistor

