T0834 S.E. (SEM. IV) (Choice Base) (CHEMICAL ENGG.) / T10027 APPLIED MATHEMATICS - IV Q. P. Code: 38205

Time: 3 hours Marks: 80

N.B.: (1) Question No 1 is compulsory

(2) Attempt any three questions out of the remaining five questions

(3) Non Programmable calculator is allowed

Q.1)

- a) Find the value of the integral $\int_C (x+y)dx + x^2ydy$ along y=x² having (0,0) and (3,9) end points . [5]
- b) Find the Fourier Series representing by f(x)=x, $0 < x < 2\pi$. [5]
- c) Find the Fourier transforms of $f(x)=1-x^2$, |x|<1; 0 for |x|>1 [5]
- d) Prove that $\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{E(e^x)}{\Delta^2 e^x} = e^x$ the interval of differencing being h. [5]

Q.2)

- a) Prove that $\frac{1}{2} x = \frac{1}{\pi} \sum_{1}^{\infty} \frac{1}{n} \sin \frac{2n\pi x}{l}$, 0 < x < l [6]
- b) Using the method of Lagrange's multipliers solve the following NLPP Optimize $z=4x_1+8x_2-x_1^2-x_2^2$ subject to $x_1+x_2=4$, $x_1,x_2 \ge 0$ [6]
- c) Expand $f(x) = \frac{1}{z^2(z-1)(z+1)}$ about z=0 indicating the region of convergence. [8]

Q.3)

- a) If f(1)=4, f(2)=4,f(7)=5 and f(8)=4, find f(5) using Lagrange's Interpolation formula [6]
- b) The vibrations of an elastic string is governed by the partial differential equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$. The length of the string is π and the ends are fixed. The initial velocity is zero and the initial deflection is $u(x,0)=2(\sin x+\sin 3x)$. Find the deflection u(x,t) of the vibrating string for t>0.
- c) Use the Kuhn Tucker conditions to solve the following NLPP [8] Maximize $z=2x_1+3x_2-x_1^2-2x_2^2$ subject to $x_1+3x_2 \le 6$, $5x_1+2x_2 \le 10$, $x_1,x_2 \ge 0$

Q4)

- a) Prove that $x(\pi x) = \frac{\pi^2}{6} \left[\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \dots \right]$ in the interval $(0, \pi)$ [6]
- b) Evaluate the integral using Cauchy's Integral formula $\int_C \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $|z| = \frac{3}{2}$ [6]
- c) Find the solution of one dimensional heat flow is given by $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ for which $u(0,t) = u(l,t), u(x,0) = \sin \frac{\pi x}{l}$. [8]

Q. P. Code: 38205

Q5)

- a) If $y_0 = -8$, $y_1 = -6$, $y_2 = 22$, $y_3 = 148$, $y_4 = 492$, $y_5 = 122$ find y_6 . [6]
- b) Find the complex form of the Fourier series for $f(x) = e^{ax}$ over the interval (-1, 1) [6]
- c) The diameter of a semicircular plate of radius a is kept at 0°C and the temperature at the semicircular boundary is T°C. Find the steady state temperature in the plate.

[8]

Q6)

- a) Using method of separation of variable solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ [6]
- b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$. [6]
- c) (i) Use appropriate difference formula to find t when p=84 from the [4] following data

р	60	70	80	90
t	226	250	276	304

(ii) Express $f(x)=x^4-12x^3+42x^2-30x+9$ in terms of factorial polynomials. [4]

•