

MAHATMA GANDHI MISSION'S COLLEGE OF ENGINEERING & TECHNOLOGY

Affliated to University of MUMBAI & Approved by AICTE, New Delhi An ISO 9001: 2000 Certified Institute Sec.18, Kamothe, Navi Mumbai -410209

DEPARTMENT OF BIOTECHNOLOGY

Guest Lecture by Dr. Raman P. Yadav on 31.03.2017

Topic: IPR and Biosafety

Dr. Raman P. Yadav delivered a lecture on "IPR & Biosafety" to TE, Biotech students from 2 pm to 4 pm.

Major topics covered were as followed:

Definition of IPR: These are legal rights which result from intellectual; activity in industrial, scientific, literary and artistic field.

Types of IPR: Patents, Trademarks, Copyrights & Related Rights, Geographical Indications, Industrial Designs, Trade secrets, Layout designs for Integrated Circuits, protection of new plant varieties.

History of IPR:

- Signing on paintings and creations by ancients artists
- Rewards & Monopolies granted by Emperors.
- Stamping of jewelers' initials on jewelry.
- US patent Law enacted by Congress in 1790 as part of the Constitution.
- First patent was granted for "Salt Making" in 1641.
- Indian Patent Act 1970

Patent sector Wise Analysis

Academia: Requirements & Challenges

- IP awareness, IP knowledge, realizing ground realities
- Counselling of Scientists/Scholars/Students
- Pre-publication Screening Gateways

- IP Policy: Confidentiality, Agreement and Contract
- IP coordinators
- IP Management Cell

Some Breakthrough Technologies

- Termite inspired Heating & Cooling Air Conditioning Systems
- Making building blocks cement from CO₂ inspired by Mollusca
- Plastic from CO & CO₂ inspired by Citrus
- Drinking water inspired by Namibian bug

What is the purpose of Patenting?

To seek an exclusive right to use the invention.

The Indian Patent act 1970

- Process Patent
- 5 years for food, drugs, medicines and 14 years for other inventions.
- Focus on generic & neglect the discovery of new drugs.
- Latest amendment-2016

Different Types of Patent:

- Process patent
- Product patent
- Design patent
- Utility patent

Criteria for Patentability

- Novelty
- Non obviousness
- Useful
- Industrial applications

IPR potential in Biotechnology

IP protection for biotech is currently in a state of flux. It is an integrated field which involves fields like Enzyme engineering, Chemical technology, Genetics, Process technology, Tissue culture etc. therefore there is a lot of scope for IPR in the field of Biotechnology.

Prior Art

- Any information in public domain.
- Why do you need prior art search
- Sites related to prior Art Search-Scopus, JHU, USPTO etc.

Process for filing Patent

- Submission of Application
- Publication and examination of application.
- Opposition to grant of patent
- Grant and Sealing of Patent

BIOSAFETY

Biosafety:

- It is the prevention of large-scale loss of biological integrity, focusing both on ecology and human health.
- These prevention mechanisms include conduction of regular reviews of the biosafety in laboratory settings, as well as strict guidelines to follow.
- Biosafety is used to protect from harmful incidents. Many laboratories handling biohazards employ an ongoing risk management assessment and enforcement process for biosafety.
- Human error and poor technique contribute to unnecessary exposure and compromise the best safeguards set into place for protection.

A **biosafety level** is a set of biocontainment precautions required to isolate dangerous biological agents in an enclosed laboratory facility. The levels of containment range from the lowest biosafety level 1 (BSL-1) to the highest at level 4 (BSL-4).

Biosafety level 1: Biosafety level 1 (BSL-1) is suitable for work with well-characterized agents which do not cause disease in healthy humans. In general, these agents should pose minimal potential hazard to laboratory personnel and the environment.

Biosafety level 2: At this level, all precautions used at Biosafety Level 1 are followed, and some additional precautions are taken. BSL-2 differs from BSL-1 in that:

- Laboratory personnel have specific training in handling pathogenic agents and are directed by scientists with advanced training.
- Access to the laboratory is limited when work is being conducted.
- Extreme precautions are taken with contaminated sharp items.
- Certain procedures in which infectious aerosols or splashes may be created are conducted in biological safety cabinets or other physical containment equipment.

Biosafety level 3: Biosafety level 3 is appropriate for work involving microbes which can cause serious and potentially lethal disease via the inhalation route.

- All laboratory personnel are provided medical surveillance and offered relevant immunizations (where available) to reduce the risk of an accidental or unnoticed infection.
- All procedures involving infectious material must be done within a biological safety cabinet.
- Laboratory personnel must wear solid-front protective clothing (i.e. gowns that tie in the back). This cannot be worn outside of the laboratory and must be discarded or decontaminated after each use.
- A laboratory-specific biosafety manual must be drafted which details how the laboratory will operate in compliance with all safety requirements.

Biosafety level 4: Biosafety level 4 (BSL-4) is the highest level of biosafety precautions, and is appropriate for work with agents that could easily be aerosol-transmitted within the laboratory and cause severe to fatal disease in humans for which there are no available vaccines or treatments. BSL-4 laboratories are generally set up to be either cabinet laboratories or protective suit laboratories.

RISK ASSESMENT

Pathogenicity of materials, Routes of their transmission, Agent stability, Infectious dose, Concentration, Origin of materials, Availability of effective prophylaxis, Skill level of staff, Medical surveillance.

