Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester VI Course Code: MEC603 and Course Name: Finite Element Analysis

Time: 1 hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Computer-aided Three-dimensional Interactive Application and Finite
	Element Analysis System both were developed by
Option A:	ABAQUS
Option B:	IBM
Option C:	Dassault Systems of France
Option D:	ANSYS
Q2.	Method in which residual function is taken as the weighting function is
Option A:	Galerkin method
Option B:	least square method
Option C:	collocation method
Option D:	subdomain method
Q3.	The degree of polynomial solution of a given differential equation is
Option A:	One less than the order of the differential equation
Option B:	One more than the order of the differential equation
Option C:	Equal to the order of the differential equation
Option D:	Two more than the order of the differential equation
Q4.	Weighted integral form is
Option A:	Not equal to zero
Option B:	Less than zero
Option C:	More than zero
Option D:	Equal to zero
Q5.	The shape functions of a two-node bar element are
Option A:	Linear
Option B:	Quadratic
Option C:	Constant
Option D:	Either quadratic or constant
Q6.	Dirichlet Boundary condition is
Option A:	All natural boundary conditions on secondary variables
Option B:	Mixed boundary conditions
Option C:	All essential boundary conditions on primary variables
Option D:	All natural boundary conditions on primary variables
Q7.	Stiffness matrix is amatrix
Option A:	Symmetric
Option B:	Diagonal

Examination 2020 under cluster 4 (PCE)

Option C:	Asymmetric
Option D:	Unit
Q8.	Degree of freedom for one-dimensional analysis of heat transfer variation of
-	hot and cold fluids in a double pipe heat exchanger is
Option A:	1
Option B:	2
Option C:	3
Option D:	4
1	
Q9.	The nature of loading at various locations and other surfaces conditions
	called
Option A:	Boundary condition
Option B:	Traction
Option C:	Friction
Option D:	Surfacing
option 2.	
O10.	Which of the following is one of the convergence criteria
Option A:	The polynomial should be an incomplete polynomial
Option B:	The polynomial should be a complicated polynomial
Option C:	The polynomial should be a complete polynomial
Option D:	No polynomial required
011	The secondary variable in Fluid problem is
Option A:	Pressure
Option B:	Force
Option C:	Discharge
Option D:	Time
012	The matrix equation for structural analysis is
Option A:	[K][F]={U}
Option R:	{I}}[K]=[F]
Option C:	[K]/II]-[F]
Option D:	$[\mathbf{K}](\mathbf{U}) - [\mathbf{K}]$
Option D.	
013	Determine the Stress (in Newton per square centimeter) in element number
Q15.	2 of the stepped bar shown in the figure subjected to Temperature Change
	Elementi-
	ΔT = 0° C from A to D A = 24 cm ² α = 20x 10 ⁴ / ₉ °C σ = 5x 0/3 / w m ²
	$A = 18 \text{ cm}^2$ $\alpha = 12 \times 10^{6/3} \text{ C}$
	E = 2x 10 ⁷ N/cm ²
	$\alpha = 12 \times 10^{-6}$ %C
Option A:	E = 2x 10 ⁷ N/cm ²
Option P	10
Option C:	20
Option D.	30
1	

Examination 2020 under cluster 4 (PCE)

Q14.	For 1D linear element, natural coordinate is $\xi=0.5$, find the shape functions
	ϕ_1 and ϕ_2
Option A:	0.25, 0.75
Option B:	0.35, 0.65
Option C:	1,0
Option D:	0,1
Q15.	Example of 2-D element is
Option A:	Bar element
Option B:	Beam element
Option C:	Triangular element
Option D:	Brick element
Q16.	When a thin plate is subjected to loading in its own plane only, the
	condition is called condition.
Option A:	Plane stress
Option B:	Plane strain
Option C:	Zero stress
Option D:	Zero strain
Q17.	Higher order Serendipity elements are obtained by:
Option A:	Adding external nodes only
Option B:	Adding internal nodes only
Option C:	Adding both internal and external nodes
Option D:	Without adding nodes
•	
Q18.	In 3 node triangular element, $\phi_1 = 0.25$ and $\phi_3 = 0.25$ then value of ϕ_2
Option A:	0
Option B:	1
Option C:	0.5
Option D:	-0.5
•	
Q19.	The total potential energy of an elastic body is defined as
Option A:	Strain energy - Work potential
Option B:	Strain energy + Work potential
Option C:	Strain energy + Kinetic energy - Work potential
Option D:	Strain energy + Kinetic energy + Work potential
•	
Q20.	Dimension of Jacobian matrix for 2D quadrilateral element is
Option A:	2x1
Option B:	1x2
Option C:	2x2
Option D:	4x4
·	
Q21.	The dimension of the Stress-Strain Relation (D) matrix for 2D stress
	analysis is
Option A:	1x1
Option B:	1x3

Examination 2020 under cluster 4 (PCE)

Option C:	3x1
Option D:	3x3
Q22.	In 2D stress analysis, the shear strain in
Option A:	Su
	<i>oy</i>
Option B:	δv
	$\overline{\delta x}$
Option C:	S., S.
1	$\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t}$
	δγ δχ
Option D:	$\frac{\delta u}{\delta v}$
	$\delta x = \delta y$
Q23.	Analysis that deals with the determination of natural frequency is
Option A:	Structural Analysis
Option B:	Thermal Analysis
Option C:	Modal Analysis
Option D:	Kinematic Analysis
Q24.	Lumped Mass Matrices for transverse vibration of beam is given by,
Option A:	$\frac{\rho Al}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Option B:	$ \frac{\rho A l}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} $
Option C:	
opnon et	$\frac{\rho Al}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
Option D:	$\frac{\rho Al}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
025	Notural Erroguanou of axial vibration of her $(E = 200 \text{ CD}_{2}) = -7900 \text{ b}_{2}/\text{cm}^{3}$
Q25.	Induital Frequency of axial vibration of bar (E = 200GPa, $\rho = 7800$ kg/m ⁻ ,
	element is given by
Option A:	7161 51 rad
Option P:	8150 04 rad
Option C:	01 <i>37.7</i> + 1au 7751 26 rad
Option D:	9770 58 rod
Option D:	0770.30 Tau

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester VI Course Code: MEC603 and Course Name: Finite Element Analysis

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	В
Q4	D
Q5	А
Q6	С
Q7	А
Q8.	В
Q9.	А
Q10.	С
Q11.	С
Q12.	С
Q13.	А
Q14.	А
Q15.	С
Q16.	А
Q17.	А
Q18.	С
Q19.	В
Q20.	С
Q21.	D
Q22.	С
Q23.	С
Q24.	D
Q25.	A