# University of Mumbai <br> Examination 2020 under cluster 4 (PCE) 

Program: BE Mechanical Engineering<br>Curriculum Scheme: Rev2016<br>Examination: Third Year Semester VI<br>Course Code: MEC603 and Course Name: Finite Element Analysis

Time: 1 hour

Note to the students: - All the Questions are compulsory and carry equal marks.

| Q1. | Computer-aided Three-dimensional Interactive Application and Finite <br> Element Analysis System both were developed by |
| :--- | :--- |
| Option A: | ABAQUS |
| Option B: | IBM |
| Option C: | Dassault Systems of France |
| Option D: | ANSYS |
|  |  |
| Q2. | Method in which residual function is taken as the weighting function is |
| Option A: | Galerkin method |
| Option B: | least square method |
| Option C: | collocation method |
| Option D: | subdomain method |
|  |  |
| Q3. | The degree of polynomial solution of a given differential equation is |
| Option A: | One less than the order of the differential equation |
| Option B: | One more than the order of the differential equation |
| Option C: | Equal to the order of the differential equation |
| Option D: | Two more than the order of the differential equation |
|  |  |
| Q4. | Weighted integral form is |
| Option A: | Not equal to zero |
| Option B: | Less than zero |
| Option C: | More than zero |
| Option D: | Equal to zero |
|  |  |
| Q5. | The shape functions of a two-node bar element are |
| Option A: | Linear |
| Option B: | Quadratic |
| Option C: | Constant |
| Option D: | Either quadratic or constant |
|  |  |
| Q6. | Dirichlet Boundary condition is |
| Option A: | All natural boundary conditions on secondary variables |
| Option B: | Mixed boundary conditions |
| Option C: | All essential boundary conditions on primary variables |
| Option D: | All natural boundary conditions on primary variables |
|  |  |
| Q7. | Stiffness matrix is a |
| Option A: | Symmetric |
| Option B: | Diagonal |
|  |  |

## University of Mumbai

Examination 2020 under cluster 4 (PCE)


## University of Mumbai

Examination 2020 under cluster 4 (PCE)

| Q14. | For 1D linear element, natural coordinate is $\xi=0.5$, find the shape functions <br> $\phi_{1}$ and $\phi_{2}$ |
| :--- | :--- |
| Option A: | $0.25,0.75$ |
| Option B: | $0.35,0.65$ |
| Option C: | 1,0 |
| Option D: | 0,1 |
|  |  |
| Q15. | Example of 2-D element is |
| Option A: | Bar element |
| Option B: | Beam element |
| Option C: | Triangular element |
| Option D: | Brick element |
|  |  |
| Q16. | When a thin plate is subjected to loading in its own plane only, the <br> condition is called <br> Option A: |
| Plane stress |  |
| Option B: | Plane strain |
| Option D: | Zero stress |
|  | Zero strain |
| Q17. | Higher order Serendipity elements are obtained by: |
| Option A: | Adding external nodes only |
| Option B: | Adding internal nodes only |
| Option C: | Adding both internal and external nodes |
| Option D: | Without adding nodes |
|  |  |
| Q18. | In 3 node triangular element, $\phi_{1}=0.25$ and $\phi_{3}=0.25$ then value of $\phi_{2}$ |
| Option A: | 0 |
| Option B: | 1 |
| Option C: | 0.5 |
| Option D: | -0.5 |
|  |  |
| Q19. | The total potential energy of an elastic body is defined as |
| Option A: | Strain energy - Work potential |
| Option B: | Strain energy + Work potential |
| Option C: | Strain energy + Kinetic energy - Work potential |
| Option D: | Strain energy + Kinetic energy + Work potential |
|  |  |
| Q20. | Dimension of Jacobian matrix for 2D quadrilateral element is |
| Option A: | $2 x 1$ |
| Option B: | $1 \times 2$ |
| Option C: | $2 \times 2$ |
| Option D: | $4 \times 4$ |
|  | The dimension of the Stress-Strain Relation (D) matrix for 2D stress <br> analysis is |
| $1 \times 1$ |  |
| $1 \times 3$ |  |

# University of Mumbai <br> Examination 2020 under cluster 4 (PCE) 

| Option C: | 3x1 |
| :---: | :---: |
| Option D: | $3 \times 3$ |
| Q22. | In 2D stress analysis, the shear strain in |
| Option A: | $\frac{\delta u}{\delta y}$ |
| Option B: | $\frac{\delta v}{\delta x}$ |
| Option C: | $\frac{\delta u}{\delta y}+\frac{\delta v}{\delta x}$ |
| Option D: | $\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}$ |
| Q23. | Analysis that deals with the determination of natural frequency is |
| Option A: | Structural Analysis |
| Option B: | Thermal Analysis |
| Option C: | Modal Analysis |
| Option D: | Kinematic Analysis |
| Q24. | Lumped Mass Matrices for transverse vibration of beam is given by, |
| Option A: | $\frac{\rho A l}{2}\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$ |
| Option B: | $\frac{\rho A l}{2}\left[\begin{array}{llll} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$ |
| Option C: | $\frac{\rho A l}{2}\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$ |
| Option D: | $\frac{\rho A L}{2}\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$ |
| Q25. | Natural Frequency of axial vibration of bar (E = 200GPa, $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$, $\mathrm{L}=1 \mathrm{~m}$ ) fixed at one end using lumped mass matrices using one linear element is given by |
| Option A: | 7161.51 rad |
| Option B: | 8159.94 rad |
| Option C: | 7751.26 rad |
| Option D: | 8770.58 rad |

## University of Mumbai

## Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester VI
Course Code: MEC603 and Course Name: Finite Element Analysis
Time: 1 hour

| Question | Correct Option (Enter either ' $A$ ' or ' $B$ ' or ' $C$ ' or ' $D$ ') |
| :---: | :---: |
| Q1. | C |
| Q2. | B |
| Q3. | B |
| Q4 | D |
| Q5 | A |
| Q6 | C |
| Q7 | A |
| Q8. | B |
| Q9. | A |
| Q10. | C |
| Q11. | C |
| Q12. | C |
| Q13. | A |
| Q14. | A |
| Q15. | C |
| Q16. | A |
| Q17. | A |
| Q18. | C |
| Q19. | B |
| Q20. | C |
| Q21. | D |
| Q22. | C |
| Q23. | C |
| Q24. | D |
| Q25. | A |

