Program: BE Mechanical Engineering Curriculum Scheme: **Rev2012** Examination: Third Year **Semester VI**

Course Code: **MEC603** and Course Name: **Mechanical Vibrations**Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	What causes vibrations?	
Option A:	When spring force = damping force	
Option B:	When spring force > damping force	
Option C:	When heat energy is converted to work	
Option D:		
F	g, ger each each each each each each each each	
Q2.	When a certain mass was placed very gradually on a platform to which a spring is connected, the static deflection was observed to be 50 mm. What is the linear frequency?	
Option A:	2.23 rad/s	
Option B:	14 rad/s	
Option C:	2.23 Hz	
Option D:	14 Hz	
•		
Q3.	are also known as Transient Vibrations.	
Option A:	Undamped	
Option B:	Damped	
Option C:	*	
Option D: Transverse		
Q4.	The static deflection of a spring-mass system is 0.5 m. Once disturbed, the time-period of vibration is found to be seconds.	
Option A:	4.43	
Option B:	1.42	
Option C:	2.21	
Option D:	2	
-		
Q5.	An instrument has a natural frequency of 10 Hz. Maximum acceleration of the system is observed to be 24 m/s^2. The maximum displacement of the system ismm.	
Option A:	0.00608	
Option B:	0.0608	
Option C:	0.608	
Option D:	6.08	
•		
Q6.	The reduction of the amplitude ratio in the presence of damping is very significant	
Option A:	$near \omega = \omega n$	
Option B:	$near \omega = \omega d$	
Option C:	$near \omega = 0$	

Option D:	near ω = infinity
Q7.	Two viscous dampers with coefficients c1 and c2 are connected in series. The equivalent damping coefficient (c) is
Option A:	1/c = 1/c1 + 1/c2
Option B:	c = c1 + c2
Option C:	c = c1.c2
Option D:	c = c1/c2
•	
Q8.	A spring mass damper system has mass, m=2 kg and spring stiffness, k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb.
Option A:	0.125
Option B:	0.25
Option C:	1.125
Option D:	3.125
_	
Q9.	Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is its natural frequency, whereas in case of Coulomb damping, it is its natural frequency. (1) Less than (2) greater than (3) equal to (4) straight line (5) exponential curve (6) parabolic curve Choose the correct sequence.
Option A:	4,5,2,1
Option B:	5,4,1,3
Option C:	6,4,2,3
Option D:	5,6,1,2
Орион В.	3,0,1,2
Q10.	There are two dampers which are connected in parallel combination and placed between the moving parts of machine having maximum relative velocity of 2 m/s. Find the maximum damping force exerted by the combination if damping coefficient of the dampers are 7 N-s/m and 14 N-s/m.
Option A:	4.67 N
Option B:	10.5 N
Option C:	21 N
Option D:	42 N
Q11.	A continuous system has number of degrees of freedom.
	A continuous system has number of degrees of freedom.
Option A:	
Option B:	1 2
Option C:	
Option D:	infinite
Q12.	Rayleigh's method can be used for estimation of natural frequency for vibrations.
Option A:	Random
-	•

Option B: Transverse Option C: Torsional Option D: Non-linear Q13. A vibration system has zero fundamental natural frequency. Option A: Definite Option B: Semi-definite Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm Option D: 4.05 mm		
Option D: Non-linear Q13. A vibration system has zero fundamental natural frequency. Option A: Definite Option B: Semi-definite Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
Q13. A		
Option A: Definite Option B: Semi-definite Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and $\xi = 0.3$ is attached a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option C: 3.90 mm Option C: 3.97 mm		
Option A: Definite Option B: Semi-definite Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and $\xi = 0.3$ is attached a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option C: 3.90 mm Option C: 3.97 mm		
Option B: Semi-definite Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option C: 3.97 mm		
Option C: Positive Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
Option D: Negative Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and $\xi = 0.3$ is attached structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option C: 3.97 mm		
Q14. In free torsional vibration of two rotor system, node is a section of the shaft torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and $\xi = 0.3$ is attached a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
torsion vibration is Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
 Option A: maximum Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm 	t where	
Option B: minimum Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
Option C: zero Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
 Option D: can be any value Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm 		
 Q15. A vibrometer having a natural frequency of 4 rad/s and ξ = 0.3 is attached to structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm 		
structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s. Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
Option A: 3.82 mm Option B: 3.90 mm Option C: 3.97 mm		
Option B: 3.90 mm Option C: 3.97 mm		
Option C: 3.97 mm		
Q16. In vibration isolation system, if $(\omega/\omega n) > 1$, then phase difference between transmitted force and the disturbing force is degrees.	In vibration isolation system, if $(\omega/\omega n) > 1$, then phase difference between the transmitted force and the disturbing force is degrees.	
Option A: 0		
Option B: 90		
Option C: 180		
Option D: 270		
Q17. Vibrometer is a natural frequency transducer.		
Option A: High		
Option B: Low		
Option C: Zero		
Option D: Negative		
Q18. For experiencing the least vibrations, a driver should drive his vehicle at speed.		
Option A: equal to resonance speed		
Option B: less than resonance speed		
Option C: between frequency ratio of 1 to $\sqrt{2}$		
Option D: greater than frequency ratio of $\sqrt{2}$		
Q19. In order to have a complete balance of the several revolving masses in different planes,		

University of Mumbai

Examination 2020 under cluster 4 (PCE)

the resultant force must be zero	
the resultant force must be zero	
the resultant couple must be zero	
both the resultant force and couple must be zero reciprocating forces must be zero	
reciprocating forces must be zero	
Multi-sulinder ancines are desirable because	
Multi-cylinder engines are desirable because	
balancing problems & flywheel size are reduced	
only balancing problems are reduced	
only flywheel size is reduced	
flywheel size remains the same	
Let the disturbing mass be 100 kg and the radius of rotation be 10 cm and the	
rotation speed be 50 rad/s, then calculate the centrifugal force in kN.	
50	
25	
50,000	
25,000	
What is NOT the effect of unbalanced forces?	
Load on bearings	
Dangerous vibrations	
Stresses in various members	
Violation of conservation of mass principle	
* *	
Rotating shaft tends to vibrate violently at whirling speeds because	
the shaft is rotating at varying speeds	
bearing center line coincide with the shaft axis	
the system is unbalanced	
resonance is caused	
When a disc is supported in-between a shaft, the critical speed of the shaft is	
equal to natural frequency of the system in	
longitudinal vibrations	
transverse vibrations	
non-linear vibrations	
torsional vibrations	
Which among the following parameters is NOT used to measure vibration?	
Frequency	
Phase	
Amplitude	
Static Deflection	

Program: BE Mechanical Engineering Curriculum Scheme: **Rev2012** Examination: Third Year **Semester VI**

Course Code: MEC603 and Course Name: Mechanical Vibrations

Time: 1 hour Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	С
Q3.	В
Q4	В
Q5	D
Q6	A
Q7	A
Q8.	A
Q9.	В
Q10.	D
Q11.	D
Q12.	В
Q13.	В
Q14.	С
Q15.	С
Q16.	С
Q17.	В
Q18.	D
Q19.	С
Q20.	A
Q21.	В
Q22.	D
Q23.	D
Q24.	В
Q25.	D