Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CEC603 and Course Name: Applied Hydraulics II

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

The displacement thickness for velocity distribution in a boundary layer expressed Q1. by $u/U=2y/\delta$ is: Option A: -1/3 δ Option B: -1/2 δ Option C: 1/3 δ Option D: 1/2 δ Q2. Which of the following formulas has been used by Lacey's theory to determine the actual velocity Option A: Chezy' Equation Option B: General Regime Flow Equation Manning's formula Option C: Kutter's formula Option D: Q3. If the size of the soil particle is 0.45 mm, what will be the Lacey's silt factor Option A: 1.18 Option B: 0.86 Option C: 0.76 Option D: 0.96

Q4.	The channel after attaining its section and longitudinal slope, will be said to be in
Option A:	Final Regime
Option B:	Initial Regime
Option C:	Permanent Regime
Option D:	True Regime
Q5.	In case of turbulent boundary layer on a flat plate the velocity distribution is greatly influenced by
Option A:	Viscous effect
Option B:	Shear effect
Option C:	Inertia effect
Option D:	Turbulent effect
06	Kannady, in his silt theory, assumed that the silt is kent in suspension because of
QU.	eddies generated from the
Option A:	top of the channel
Option B:	Whole perimeter
Option C:	sides of the channel only
Option D:	bottom of the channel only
Q7.	The critical velocity ratio was introduced in Kennedy's critical velocity equation to take into account the effect of
Option A:	Cross-section of the channel
Option B:	Topography
Option C:	Silt grade
Option D:	Roughness of bed

0.0	The condition for concration and detached flow are	
Q8.	The condition for separation and detached now are	
Option A:	$(\partial u/\partial y)$ is zero and negative	
Option B:	$(\partial u/\partial y)$ is zero and positive	
Option C:	(ðu/ðy) is zero	
Option D:	(∂u/∂y) is negative	
Q9.	The velocity of the ideal fluid at any point on the surface of the cylinder is given by	
Option A:	$u_0 = 2U \sin \Theta$	
Option B:	$u_0 = 2U^2 \sin \Theta$	
Option C:	$u_0 = 2Usin^2 \Theta$	
Option D:	$u_0 = 2Usin^2 2\Theta$	
Q10.	According to Kennedy' theory the velocity of flow in the channel which keeps the sediment in suspension and do not allow silting is called as	
Option A:	Mean velocity	
Option B:	Average velocity	
Option C:	Critical Velocity	
Option D:	Minimum velocity	
Q11.	A flat plate 1.5 X 1.5 m moves at 50 km/hr in stationary air density 1.15 kg/m ³ . If the co efficient of drag and lift are 0.15 and 0.17 respectively, determine the lift force	
Option A:	187.20 N	
Option B:	197.30 N	
Option C:	297.30 N	

Option D: 28 Q12. Sp Option A: D Option B: Bo	87.20 N pecific energy in GVF changes only under which of the following conditions. Difference between bed slope and slope of energy line Both bed slope and energy slope are equal Presence of bed slope alone Presence of energy slope alone
Q12. Sp Option A: D Option B: Be	pecific energy in GVF changes only under which of the following conditions. Difference between bed slope and slope of energy line Soth bed slope and energy slope are equal Presence of bed slope alone Presence of energy slope alone
Option A: D Option B: Be	Difference between bed slope and slope of energy line Soth bed slope and energy slope are equal Presence of bed slope alone Presence of energy slope alone
Option A: D Option B: Be	Difference between bed slope and slope of energy line Noth bed slope and energy slope are equal Presence of bed slope alone Presence of energy slope alone
Option B: Bo	Presence of bed slope alone Presence of energy slope alone Presence of energy slope alone
	Presence of bed slope alone Presence of energy slope alone irculation developed on the airfoil is given by
Option C: P	resence of energy slope alone
Option D: Pr	irculation developed on the airfoil is given by
	irculation developed on the airfoil is given by
Q13. ci	
Option A: Γ =	=πCU cos ά
Option B: Γ=	=πCU sin ά
Option C: Γ =	=πC²U cos ά
Option D: F=	=πC²U sin ά
Q14. FI	low developed due to sudden transition is
Option A: G	Gradually varied flow
Option B: Sp	patially varied flow
Option C: Ra	apidly varied flow
Option D: U	Iniform flow
Q15. Tł	here will be a transition from laminar flow to turbulent flow when:
Option A: Re	eynolds number increases
Option B: Re	eynolds number decreases
Option C: Re	eynolds number is the same
Option D: Fr	roude's number increases

Q16.	When the flow in an open channel is gradually varied, the flow is said to be :
Option A:	Steady uniform flow
Option B:	Steady non-uniform flow
Option C:	unsteady unifrom flow
Option D:	unsteady non-uniform flow
Q17.	Where is hydraulic jump used in industrial applications?
Option A:	Spillways
Option B:	Pipes
Option C:	Pumps
Option D:	Filters
Q18.	Let the top width of a rectangular channel be B and the depth be y, determine the hydraulic radius of the channel.
Option A:	By/ B+2y
Option B:	By/ B+ y
Option C:	У
Option D:	В
Q19.	Calculate the side slope of a trapezoidal channel section having base 8m, depth 4m and the hydraulic radius is 2.36m.
Option A:	1/6
Option B:	1/3
Option C:	1/2
Option D:	1/4

Q20.	The critical depth of the channel is given by:
Option A:	$\left(\frac{q}{g}\right)^{1/2}$
Option B:	$\left(\frac{q^2}{g}\right)^{1/3}$
Option C:	$\left(\frac{q^3}{g}\right)^{1/4}$
Option D:	$\left(\frac{q^4}{g}\right)^{1/5}$
Q21.	For a channel to be economic which of the following parameters should be minimum.
Option A:	Wetted perimeter
Option B:	Wetted area
Option C:	Section factor
Option D:	Hydraulic depth
Q22.	Energy per unit weight of water measured with respect to the datum is called as:
Option A:	Total energy
Option B:	Specific energy
Option C:	Velocity head
Option D:	Datum head
Q23.	Determine the Hydraulic depth for a triangular channel having side slope of 1H:3V and depth 15m.
Option A:	30m
Option B:	15m
Option C:	7.5m
Option D:	3.75m

Q24.	Estimate the value of Chezy's constant if the value of the friction factor is 0.031.
Option A:	35
Option B:	40
Option C:	45
Option D:	50
Q25.	What is the plot between Total energy and channel position called as?
Option A:	Specific grade line
Option B:	Energy grade line
Option C:	Velocity line
Option D:	Datum line

Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CEC603 and Course Name: Applied Hydraulics II

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	В
Q3.	А
Q4	А
Q5	А
Q6	D
Q7	С
Q8.	А
Q9.	А
Q10.	С
Q11.	А
Q12.	В
Q13.	В
Q14.	С
Q15.	A
Q16.	В
Q17.	А

Q18.	А
Q19.	С
Q20.	В
Q21.	А
Q22.	В
Q23.	С
Q24.	D
Q25.	В