Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CEC603 and Course Name: Applied Hydraulics II

Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The displacement thickness for velocity distribution in a boundary layer expressed by u/U=2y/ $/ \mathrm{is:}$
Option A:	$-1 / 3 \delta$
Option B:	$-1 / 2 \delta$
Option C:	$1 / 3 \delta$
Option D:	$1 / 2 \delta$
Q2.	Which of the following formulas has been used by Lacey's theory to determine the actual velocity
Option A:	Chezy' Equation
Option B:	General Regime Flow Equation
Option C:	Manning's formula
Option D:	Kutter's formula
Q3.	If the size of the soil particle is 0.45 mm, what will be the Lacey's silt factor Option A: Option B: Option C: 0.86 Option D: 0.96

Q4.	The channel after attaining its section and longitudinal slope, will be said to be in
Option A:	Final Regime
Option B:	Initial Regime
Option C:	Permanent Regime
Option D:	True Regime
Q5.	In case of turbulent boundary layer on a flat plate the velocity distribution is greatly influenced by
Option A:	Viscous effect
Option B:	Shear effect
Option C:	Inertia effect
Option D:	Turbulent effect
Q6.	Kennedy, in his silt theory, assumed that the silt is kept in suspension because of eddies generated from the
Option D:	Roughness of bed
Option B:	Topography
Optilt grade	
Option D:	bottom of the channel only
Option B:	top of the channel
Whole perimeter	
Option C:	sides of the channel only
take into account the effect of	

Q8.	The condition for separation and detached flow are
Option A:	($\partial u / \partial y$) is zero and negative
Option B:	($\partial u / \partial y$) is zero and positive
Option C:	($\partial \mathrm{u} / \partial \mathrm{y}$) is zero
Option D:	($\partial u / \partial y$) is negative
Q9.	The velocity of the ideal fluid at any point on the surface of the cylinder is given by
Option A:	$\mathrm{U}_{0}=2 \mathrm{U} \sin \theta$
Option B:	$\mathrm{U}_{0}=2 \mathrm{U}^{2} \sin \Theta$
Option C:	$u_{0}=2 U \sin ^{2} \theta$
Option D:	$\mathrm{u}_{0}=2 \mathrm{U} \sin ^{2} 2 \theta$
Q10.	According to Kennedy' theory the velocity of flow in the channel which keeps the sediment in suspension and do not allow silting is called as
Option A:	Mean velocity
Option B:	Average velocity
Option C:	Critical Velocity
Option D:	Minimum velocity
Q11.	A flat plate $1.5 \times 1.5 \mathrm{~m}$ moves at $50 \mathrm{~km} / \mathrm{hr}$ in stationary air density $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. If the co efficient of drag and lift are 0.15 and 0.17 respectively, determine the lift force
Option A:	187.20 N
Option B:	197.30 N
Option C:	297.30 N

Option D:	287.20 N
Q12.	Specific energy in GVF changes only under which of the following conditions.
Option A:	Difference between bed slope and slope of energy line
Option B:	Both bed slope and energy slope are equal
Option C:	Presence of bed slope alone
Option D:	Presence of energy slope alone
Q13.	circulation developed on the airfoil is given by
Option A:	$\Gamma=\pi C U \cos \alpha$
Option B:	$\Gamma=\pi C U \sin \dot{\alpha}$
Option C:	$\Gamma=\pi C^{2} U \cos \dot{\alpha}$
Option D:	$\Gamma=\pi C^{2} U \sin \dot{\alpha}$
Q14.	Flow developed due to sudden transition is
Option A:	Gradually varied flow
Option B:	Spatially varied flow
Option C:	Rapidly varied flow
Option D:	Uniform flow
Q15.	There will be a transition from laminar flow to turbulent flow when:
Option A:	Reynolds number increases
Option B:	Reynolds number decreases
Option C:	Reynolds number is the same
Option D:	Froude's number increases

Q16.	When the flow in an open channel is gradually varied, the flow is said to be :
Option A:	Steady uniform flow
Option B:	Steady non-uniform flow
Option C:	unsteady unifrom flow
Option D:	unsteady non-uniform flow
Q17.	Where is hydraulic jump used in industrial applications?
Option A:	Spillways
Option B:	Pipes
Option C:	Pumps
Option D:	Filters
Q18.	Let the top width of a rectangular channel be B and the depth be y, determine the hydraulic radius of the channel.
Option A:	By/ B+2y
Option B:	By/ B+y
Option C:	y
Option D:	B
Q19.	Calculate the side slope of a trapezoidal channel section having base 8 m , depth 4 m and the hydraulic radius is 2.36 m .
Option A:	1/6
Option B:	1/3
Option C:	1/2
Option D:	1/4

Q20.	The critical depth of the channel is given by:
Option A:	$\left(\frac{q}{g}\right)^{1 / 2}$
Option B:	$\left(\frac{q^{2}}{g}\right)^{1 / 3}$
Option C:	$\left(\frac{q^{3}}{g}\right)^{1 / 4}$
Option D:	$\left(\frac{q^{4}}{g}\right)^{1 / 5}$
Q21.	For a channel to be economic which of the following parameters should be minimum.
Option A:	Wetted perimeter
Option B:	Wetted area
Option C:	Section factor
Option D:	Hydraulic depth
Q22.	Energy per unit weight of water measured with respect to the datum is called as:
Option A:	Total energy
Option B:	Specific energy
Option C:	Velocity head
Option D:	Datum head
Q23.	Determine the Hydraulic depth for a triangular channel having side slope of 1H:3V and depth 15 m .
Option A:	30 m
Option B:	15m
Option C:	7.5m
Option D:	3.75 m

Q24.	Estimate the value of Chezy's constant if the value of the friction factor is 0.031.
Option A:	35
Option B:	40
Option C:	45
Option D:	50
Q25.	What is the plot between Total energy and channel position called as?
Option A:	Specific grade line
Option B:	Energy grade line
Option C:	Velocity line
Option D:	Datum line

Program: BE Civil Engineering
Curriculum Scheme: Revised 2012
Examination: Third Year Semester VI
Course Code: CEC603 and Course Name: Applied Hydraulics II

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	A
Q2.	B
Q3.	A
Q4	A
Q5	A
Q6	D
Q7	C
Q8.	A
Q9.	A
Q10.	C
Q11.	A
Q12.	B
Q13.	B
Q14.	C
Q15.	A
Q16.	B
Q17.	A

Q18.	A
Q19.	C
Q20.	B
Q21.	A
Q22.	B
Q23.	C
Q24.	D
Q25.	B

