Program: Biotechnology Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: <u>BTC603</u> and Course Name: <u>Enzyme Engineering</u>

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	A protein having both structural and enzymatic traits is
Option A:	Collagen
Option B:	Trypsin
Option C:	Myosin
Option D:	Actin
Q2.	With regards to the Michaelis-Menten equation, a molecule that has the effect of increasing the V <i>max</i> of a reaction upon binding to an enzyme would be called what?
Option A:	Activator
Option B:	Uncompetitive inhibitor
Option C:	Non-competitive inhibitor
Option D:	Competitive inhibitor
Q3.	Which of the following is true concerning the induced fit model of enzyme ca- talysis?
Option A:	The active site can be influenced by molecules binding elsewhere on an enzyme
Option B:	The initial binding of enzyme and substrate is the most tightly bound confor- mation
Option C:	The induced fit must occur prior to the initial binding of enzyme and substrate in order for the reaction to proceed
Option D:	The binding of enzyme and substrate is weakest in the transition state

Q4.	Not all biological catalysts are protein enzymes. Example
Option A:	Ribosomes
Option B:	Liposomes
Option C:	Ribozymes
Option D:	Zymogens
Q5.	Which of the following will be true regarding enzymes saturated with substrate?
Option A:	At saturating levels of substrate, a competitive inhibitor will affect the reaction rate more than a non-competitive inhibitor
Option B:	An enzyme with lower Km is more easily saturated than an enzyme with high Km
Option C:	Any excess substrate will shift the equilibrium towards the product end of the reaction
Option D:	Increasing the substrate concentration will appreciably increase the reaction rate
Q6.	Blocking of enzyme action by blocking its active sites is
Option A:	allosteric inhibition
Option B:	feedback inhibition
Option C:	competitive inhibition
Option D:	non-competitive inhibition
Q7.	assays are most convenient since they allow the rate of the reaction to be measured continuously.
Option A:	Radiometric
Option B:	Spectrophotometric
Option C:	Crystallography
Option D:	Isometric

Q8.	The Michaelis constant K_{M} is experimentally defined as	
Option A:	the concentration at which the rate of the enzyme reaction is double Vmax	
Option B:	the concentration at which the rate of the enzyme reaction is same as Vmax	
Option C:	the concentration at which the rate of the enzyme reaction is half Vmax	
Option D:	the concentration at which the rate of the enzyme reaction is three times Vmax	
Q9.	The enzymes enterokinase helps in the conversion of	
Option A:	Caseinogens into casein	
Option B:	Trypsinogen into trypsin	
Option C:	Pepsigenogen into pepsin	
Option D:	proteins into polypeptides	
Q10.	Catalysts are different from enzymes in	
Option A:	functional at high temperature	
Option B:	not used up in reaction	
Option C:	being proteinaceous	
Option D:	having high rate diffusion	
Q11.	Which of the following is a non linear graph	
Option A:	Lineweaver–Burk plot	
Option B:	Michaelis–Menten	
Option C:	Eadie–Hofstee diagram	
Option D:	Hanes–Woolf plot	
Q12.	In the two substrates (a and B) bind to the enzyme (E) at the same time to produce an EAB complex	
Option A:	Ternary complex mechanism	

Option B:	Ping pong mechanism	
Option C:	reversible catalysis	
Option D:	two way catalysis	
Q13.	Some of the enzymes which are associated in converting fats to carbohydrates, are present in	
Option A:	Liposomes	
Option B:	golgi bodies	
Option C:	Glyoxysomes	
Option D:	microsomes	
Q14.	Traditionally reversible enzyme inhibitors have been classified as competitive, uncompetitive, or non-competitive, according to their effects on	
Option A:	Km and Vmax	
Option B:	only Km	
Option C:	only Vmax	
Option D:	Kcat	
Q15.	Both water and glucose share an -OH that can serve as a substrate for a reaction with the terminal phosphate of ATP catalyzed by hexokinase. Glucose, however, is about a million times more reactive as a substrate than water. The best explanation is that -	
Option A:	glucose has more -OH groups per molecule than does water	
Option B:	the larger glucose binds better to the enzyme; it induces a conformational change in hexokinase that brings active-site amino acids into position for catalysis.	
Option C:	water normally will not reach the active site because it is hydrophobic	
Option D:	water and the second substrate, ATP, compete for the active site, resulting in a competitive inhibition of the enzyme	
Q16.	In a cell, digestive enzymes mostly occur in	
Option A:	Mitochondria	
Option B:	Lysosomes	

Option C:	Ribosomes	
Option D:	Golgi apparatus	
Q17.	Irriversible inhibitors generally act by	
Option A:	covalently modifying active site residues	
Option B:	masking the allosteric site	
Option C:	binding to whole enzyme	
Option D:	masking the active site temporarily	
Q18.	The favoured model for the enzyme-substrate interaction is the	
Option A:	Lock and Key model	
Option B:	Induced fit model	
Option C:	Partial binding model	
Option D:	Optimization model	
Q19.	Most of the members of vitamin B complex act as	
Option A:	Cofactor	
Option B:	Coenzyme	
Option C:	Apoenzyme	
Option D:	Prosthetic group	
Q20.	is a graphical interface tool for building kinetic models of enzyme catalyzed reactions	
Option A:	ENKN	
Option B:	ENZO	
Option C:	KINETIN	
Option D:	ENZ	
Q21.	Which one of the following statements regarding enzyme inhibition is correct?	

Option A:	Competitive inhibition is seen when a substrate competes with an enzyme for binding to a inhibitor protein	
Option B:	Non Competitive inhibition of an enzyme can be overcome by adding large amount of substrate	
Option C:	Non competitive efficiency inhibitors oten bind to the enzyme irreversibly	
Option D:	Competitive inhibition is seen when the substrate and the inhibitor compete for the active site on the enzyme	
Q22.	cleave various bonds by means other than hydrolysis and oxidation	
Option A:	Isomerase	
Option B:	Lyases	
Option C:	Ligase	
Option D:	Hydrolase	
Q23.	In some enzymes, no amino acids are directly involved in catalysis; instead, the enzyme contains sites to bind and orient catalytic	
Option A:	Cofactor	
Option B:	Coenzyme	
Option C:	Prosthetic group	
Option D:	Zymogens	
Q24.	interactions with metabolites upstream or downstream in an enzyme's metabolic pathway cause feedback regulation	
Option A:	allosteric	
Option B:	active site	
Option C:	substrate	
Option D:	product	

Q25.	The rate of a reaction is dependent on the needed to form the transition state which then decays into products.	
Option A:	release energy	
Option B:	activation energy	
Option C:	metabolic energy	
Option D:	Gibbs energy	

Program: Biotechnology Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: <u>BTC603</u> and Course Name: <u>Enzyme Engineering</u>

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	A
Q3.	A
Q4	С
Q5	В
Q6	С
Q7	В
Q8.	С
Q9.	В
Q10.	В
Q11.	В
Q12.	A
Q13.	С

Q14.	A
Q15.	В
Q16.	В
Q17.	А
Q18.	В
Q19.	А
Q20.	В
Q21.	D
Q22.	В
Q23.	А
Q24.	А
Q25.	В