University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: CHC603

Course Name: Transport Phenomena

Time: 1 hour Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	Reynolds analogy is applicable only for
Option A:	Turbulent flow
Option B:	Laminar flow
Option C:	Transient flow
Option D:	Laminar and turbulent flow
Q2.	Shear stress for a Newtonian fluid is at the interface between gas and liquid.
Option A:	0
Option B:	µdu/dy
Option C:	infinity
Option D:	finite
Q3.	What is the unit of thermal
	conductivity ?
Option A:	W/m.K
Option B:	W/m2•K
Option C:	W/m
Option D:	W
Q4.	Fick's first law of Diffusion for the Z direction is
Option A:	$J_{A} = -D_{AB} (dC_{A}/dt)$
Option B:	$JA = -D_{AB} (dC_A/dZ)$
Option C:	$JA = -D_{AB} (d^2 CA/dZ^2)$
Option D:	$JA = -D_{AB} (d^2CA/dt^2)$
Q5.	Two horizontal plates placed 250mm have an oil of viscosity 20 poises.
	Calculate the shear stress in oil if upper plate is moved with velocity of 1250 mm/s.

Option A:	20 N/m ²
_	2 N/m
Option B:	$\frac{2 \text{ N/m}}{10 \text{ N/m}^2}$
Option C:	$\frac{10 \text{ N/m}}{200 \text{ N/m}^2}$
Option D:	200 N/m
0(
Q6.	Schmidt number is
Option A:	Ratio of momentum diffusivity to mass diffusivity.
Option B:	Ratio of momentum diffusivity to thermal diffusivity.
Option C:	Ratio of mass diffusivity to thermal diffusivity.
Option D:	Ratio of thermal diffusivity to mass diffusivity.
Q7.	An insulators should have
Option A:	Low thermal conductivity
Option B:	High thermal conductivity
Option C:	Less resistance to heat flow
Option D:	A porous structure
Q8.	Steady fluid flow occurs, when the derivative of flow variables satisfy
	the following condition.
Option A:	$\frac{\partial}{\partial s} = 0$
	ðs
Option B:	0
	$\frac{\partial}{\partial t} = 0$
Option C:	
Option C.	∂/∂s = constant
Ontion D.	
Option D:	$\frac{\partial}{\partial t} = \text{constant}$
	dt
Q9.	Which law is followed by the velocity distribution in the turbulent
	boundary layer?
Option A:	Parabolic law
Option B:	Linear law
Option C:	Logarithmic law
Option D:	Polynomial law
Q10.	For turbulent flow, flux equations are NOT written using:
Option A:	Turbulent eddy momentum diffusivity
Option B:	Turbulent eddy thermal diffusivity
Option C:	Molecular diffusivity
Option D:	Turbulent eddy mass diffusivity.
Q11.	The overall resistance for heat transfer through a series of flat
	resistance, is the of the resistances
Option A:	Average
Option B:	Geometric mean
Option C:	Product
Option D:	Sum
Option D.	Juin

Q12.	Euler's equation of motion is applicable for
Option A:	Non ideal fluids
Option B:	Non Newtonian fluids
Option C:	Inviscid fluids
Option D:	Real fluids
Q13.	The unit of heat transfer co-efficient is
Option A:	W/m²∙K
Option B:	W/s
Option C:	W
Option D:	W/m.K
option D.	
Q14.	Unit of mass flux is
Option A:	kg/m ² sec
Option B:	kg/m sec
Option C:	kg/sec
Option D:	kg/m ³ sec
option D.	
Q15.	When a fluid flows over a solid surface, the
Option A:	velocity is uniform at any cross-section.
Option B:	velocity gradient is zero at the solid surface.
Option C:	resistance between the surface & the fluid is lesser as compared to that
-1	between the fluid layers themselves.
Option D:	velocity is not zero at the solid surface.
Q16.	Combined momentum flux is
Option A:	Vector
Option B:	Scalar
Option C:	Second order tensor
Option D:	Third order tensor
Q17.	The dimension of diffusion coefficient is given by
Option A:	MLT ⁻²
Option B:	$L^2 T^{-1}$
Option C:	
Option D:	M L ⁻² T
Q18.	What is Nusselt Number ?
Option A:	C _p .µ/k
Option B:	h.D/k
Option C:	$h.C_p/\mu$
Option D:	C _p . µ/ h
Q19.	In a circular pipe, which of the factors primarily decide whether the
	flow is laminar or turbulent?
Option A:	The Prandtl Number
Option B:	The Pressure gradient along the length of the pipe

The dynamic viscosity coefficient
The Reynolds Number
Mass transfer co-efficient is defined as
Flux = Co-efficient/concentration difference
Coefficient = Flux/concentration difference
Flux=concentration difference/coefficient
Flux = Coefficient x (concentration difference) ²
Equation of continuity is not valid for system where :
Chemical reactions are taking place
Nuclear reactions are taking place
Biological reactions are taking place
Catalytic reforming is taking place
In case of heat flow by conduction for a cylindrical body with an
internal heat source, the nature of temperature distribution is
Linear
Hyperbolic
Parabolic
Circular
In Fick's law of diffusion, D _{AB} is
Mass flux
Concentration gradient
Mass velocity
Mass diffusivity
$C_p \mu/K$ is termed as the number.
Grasshoff
Nusselt
Prandtl
Stanton
Which of the following correctly states how the viscosities of a liquid
and a gas will change with temperature?
Viscosity increases with the increase in temperature of a liquid and
decreases with the increase in temperature of a gas
Viscosity increases with the increase in temperature of a liquid and
increases with the increase in temperature of a gas
Viscosity decreases with the increase in temperature of a liquid and
decreases with the increase in temperature of a gas
Viscosity decreases with the increase in temperature of a liquid and
increases with the increase in temperature of a gas

Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: CHC603

Course Name: Transport Phenomena

Time: 1 hour Max. Marks: 50

Question	Correct Option
01	(Enter either 'A' or 'B' or 'C' or 'D' A-Turbulent flow
Q1.	
Q2.	B-µdu/dy
Q3.	A)W/m.K
Q4	$B)JA = -D_{AB} (dC_A/dZ)$
Q5	C)10 N/m ²
Q6	A)Ratio of momentum diffusivity to mass diffusivity
Q7	A) Low thermal conductivity
Q8.	9
	$\frac{\partial}{\partial t} = 0$
00	
<u>Q9.</u>	C)Logarithmic law
Q10.	C-Molecular diffusivity
Q11.	D)Sum
Q12.	C)Inviscid fluid
Q13.	A)W/m ² •K
Q14.	A) kg/m ² sec
Q15.	B)velocity gradient is zero at the solid surface.
Q16.	C)Second order tensor
Q17.	$B)L^{2}T^{-1}$
Q18.	B) h.D/ k
Q19.	D)The Reynolds Number
Q20.	B)Coefficient = Flux/concentration difference
Q21.	B-Nuclear reactions are taking place
Q22.	C) Parabolic
Q23.	D) Mass diffusivity
Q24.	C) Prandtl
Q25.	A)Viscosity increases with the increase in temperature of a
	liquid and decreases with the increase in temperature of a gas