University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: MEC504 and Course Name: Dynamics of Machinery

Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	What causes vibrations?
Option A:	When spring force = damping force
Option B:	When spring force > damping force
Option C:	When heat energy is converted to work
Option D:	When Kinetic Energy and Potential Energy get converted to each other
Q2.	When a certain mass was placed very gradually on a platform to which a spring is connected, the static deflection was observed to be 50 mm . What is the linear frequency?
Option A:	$2.23 \mathrm{rad} / \mathrm{s}$
Option B:	$14 \mathrm{rad} / \mathrm{s}$
Option C:	2.23 Hz
Option D:	14 Hz
Q3.	are also known as Transient Vibrations.
Option A:	Undamped
Option B:	Damped
Option C:	Torsional
Option D:	Transverse
Q4.	The static deflection of a spring-mass system is 0.5 m . Once disturbed, the timeperiod of vibration is found to be \qquad seconds.
Option A:	4.43
Option B:	1.42
Option C:	2.21
Option D:	2
Q5.	An instrument has a natural frequency of 10 Hz . Maximum acceleration of the system is observed to be $24 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. The maximum displacement of the system is \qquad mm .
Option A:	0.00608
Option B:	0.0608
Option C:	0.608
Option D:	6.08
Q6.	The reduction of the amplitude ratio in the presence of damping is very significant \qquad
Option A:	near $\omega=\omega$ n
Option B:	near $\omega=\omega \mathrm{d}$
Option C:	near $\omega=0$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option D:	near ω = infinity
Q7.	Two viscous dampers with coefficients c 1 and c 2 are connected in series. The equivalent damping coefficient (c) is \qquad
Option A:	$1 / \mathrm{c}=1 / \mathrm{c} 1+1 / \mathrm{c} 2$
Option B:	$\mathrm{c}=\mathrm{c} 1+\mathrm{c} 2$
Option C:	$\mathrm{c}=\mathrm{c} 1 . \mathrm{c} 2$
Option D:	$\mathrm{c}=\mathrm{c} 1 / \mathrm{c} 2$
Q8.	A spring mass damper system has mass, $\mathrm{m}=2 \mathrm{~kg}$ and spring stiffness, $\mathrm{k}=500 \mathrm{~N} / \mathrm{m}$. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm . Determine the friction force, assuming the damping to be purely Coulomb.
Option A:	0.125
Option B:	0.25
Option C:	1.125
Option D:	3.125
Q9.	Calculate gyroscopic couple acting on a disc which has radius of 135 mm . Angular and precessional velocities are $15 \mathrm{rad} / \mathrm{s}$ and $7 \mathrm{rad} / \mathrm{s}$ respectively. Assume density $=7810 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$ and thickness of disc $=30 \mathrm{~mm}$.
Option A:	12.83 Nm
Option B:	10.99 Nm
Option C:	11 Nm
Option D:	Incomplete data
Q10.	There are two dampers which are connected in parallel combination and placed between the moving parts of machine having maximum relative velocity of $2 \mathrm{~m} / \mathrm{s}$. Find the maximum damping force exerted by the combination if damping coefficient of the dampers are $7 \mathrm{~N}-\mathrm{s} / \mathrm{m}$ and $14 \mathrm{~N}-\mathrm{s} / \mathrm{m}$.
Option A:	4.67 N
Option B:	10.5 N
Option C:	21 N
Option D:	42 N
Q11.	For isochronous Hartnell governor
Option A:	$(\mathrm{mg}+\mathrm{S} 1) /(\mathrm{mg}+\mathrm{S} 2)=\mathrm{r} 1 / \mathrm{r} 2$
Option B:	$(\mathrm{mg}-\mathrm{S} 1) /(\mathrm{mg}-\mathrm{S} 2)=\mathrm{r} 2 / \mathrm{r} 1$
Option C:	$\mathrm{S} 1 / \mathrm{S} 2=\mathrm{r} 1 / \mathrm{r} 2$
Option D:	$\mathrm{S} 2 / \mathrm{S} 1=\mathrm{r} 1 / \mathrm{r} 2$
Q12.	Effort of a governor is the:
Option A:	mean force exerted at the sleeve for a given percentage change of speed
Option B:	work done at the sleeve for maximum equilibrium speed
Option C:	mean force exerted at the sleeve for maximum equilibrium speed
Option D:	work done at the sleeve for minimum equilibrium speed
Q13.	The engine of an aeroplane rotates in clockwise direction when seen from the tail

University of Mumbai

Examination 2020 under cluster 4 (PCE)

	end and the aeroplane takes a turn to the right. The effect of gyroscopic couple on the aeroplane will be:
Option A:	to dip the nose and tail
Option B:	to raise the nose and tail
Option C:	to raise the nose and dip of the tail
Option D:	to dip the nose and raise the tail
Q14.	A couple M of magnitude $1.5 \mathrm{kN}-\mathrm{m}$ is applied to the crank of the engine system shown in figure below. What is the force P required to hold the system in equilibrium?
Option A:	19 kN
Option B:	20 kN
Option C:	21 kN
Option D:	22 kN
Q15.	A vibrometer having a natural frequency of $4 \mathrm{rad} / \mathrm{s}$ and $\xi=0.3$ is attached to a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm , find the amplitude of motion of the vibrating structure when its frequency is $44 \mathrm{rad} / \mathrm{s}$.
Option A:	3.82 mm
Option B:	3.90 mm
Option C:	3.97 mm
Option D:	4.05 mm
Q16.	In vibration isolation system, if $(\omega / \omega n)>1$, then phase difference between the transmitted force and the disturbing force is \qquad degrees.
Option A:	0
Option B:	90
Option C:	180
Option D:	270
Q17.	Vibrometer is a __ natural frequency transducer.
Option A:	High
Option B:	Low
Option C:	Zero
Option D:	Negative
Q18.	For experiencing the least vibrations, a driver should drive his vehicle at \qquad speed.

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option A:	equal to resonance speed
Option B:	less than resonance speed
Option C:	between frequency ratio of 1 to $\sqrt{ } 2$
Option D:	greater than frequency ratio of $\sqrt{2}$
Q19.	In order to have a complete balance of the several revolving masses in different planes, . \qquad
Option A:	the resultant force must be zero
Option B:	the resultant couple must be zero
Option C:	both the resultant force and couple must be zero
Option D:	reciprocating forces must be zero
Q20.	Multi-cylinder engines are desirable because
Option A:	balancing problems \& flywheel size are reduced
Option B:	only balancing problems are reduced
Option C:	only flywheel size is reduced
Option D:	flywheel size remains the same
Q21.	Let the disturbing mass be 100 kg and the radius of rotation be 10 cm and the rotation speed be $50 \mathrm{rad} / \mathrm{s}$, then calculate the centrifugal force in kN .
Option A:	50
Option B:	25
Option C:	50,000
Option D:	25,000
Q22.	What is NOT the effect of unbalanced forces?
Option A:	Load on bearings
Option B:	Dangerous vibrations
Option C:	Stresses in various members
Option D:	Violation of conservation of mass principle
Q23.	Rotating shaft tends to vibrate violently at whirling speeds because
Option A:	the shaft is rotating at varying speeds
Option B:	bearing center line coincide with the shaft axis
Option C:	the system is unbalanced
Option D:	resonance is caused
Q24.	When a disc is supported in-between a shaft, the critical speed of the shaft is equal to natural frequency of the system in \qquad
Option A:	longitudinal vibrations
Option B:	transverse vibrations
Option C:	non-linear vibrations
Option D:	torsional vibrations
Q25.	Which among the following parameters is NOT used to measure vibration?
Option A:	Frequency
Option B:	Phase
Option C:	Amplitude

University of Mumbai

Examination 2020 under cluster 4 (PCE)
Option D: Static Deflection

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: MEC504 and Course Name: Dynamics of Machinery
Time: 1 hour

Question	Correct Option (Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' \mathbf{D} ')
Q1.	D
Q2.	C
Q3.	B
Q4	B
Q5	D
Q6	A
Q7	A
Q8.	A
Q9.	A
Q10.	D
Q11.	A
Q12.	A
Q13.	D
Q14.	C
Q15.	C
Q16.	C
Q17.	B
Q18.	D
Q19.	C
Q20.	A
Q21.	B
Q22.	D
Q23.	D
Q24.	D
Q25.	

University of Mumbai
Examination 2020 under cluster 4 (PCE)

