Program: BE Mechanical Engineering Curriculum Scheme: **Rev2016** Examination: Third Year **Semester V**

Course Code: **MEC504** and Course Name: **Dynamics of Machinery**Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	What causes vibrations?	
Option A:	When spring force = damping force	
Option B:	When spring force > damping force	
Option C:	When heat energy is converted to work	
Option D:		
F	g, ger each each each each each each each each	
Q2.	When a certain mass was placed very gradually on a platform to which a spring is connected, the static deflection was observed to be 50 mm. What is the linear frequency?	
Option A:	2.23 rad/s	
Option B:	14 rad/s	
Option C:	2.23 Hz	
Option D:	14 Hz	
•		
Q3.	are also known as Transient Vibrations.	
Option A:	Undamped	
Option B:	Damped	
Option C:	Torsional	
Option D:	Transverse	
Q4.	The static deflection of a spring-mass system is 0.5 m. Once disturbed, the time-period of vibration is found to be seconds.	
Option A:	4.43	
Option B:	1.42	
Option C:	2.21	
Option D:	2	
-		
Q5.	An instrument has a natural frequency of 10 Hz. Maximum acceleration of the system is observed to be 24 m/s^2. The maximum displacement of the system is mm.	
Option A:	0.00608	
Option B:	0.0608	
Option C:	0.608	
Option D:	6.08	
•		
Q6.	The reduction of the amplitude ratio in the presence of damping is very significant	
Option A:	$near \omega = \omega n$	
Option B:	$near \omega = \omega d$	
Option C:	$near \omega = 0$	

O : B : C :		
Option D:	near ω = infinity	
07		
Q7.	Two viscous dampers with coefficients c1 and c2 are connected in series. The	
Option A:	equivalent damping coefficient (c) is	
Option B:	c = c1 + c2	
Option C:	c = c1 + c2 $c = c1.c2$	
Option C. Option D:	c = c1/c2	
Option D.	C - C1 / C2	
Q8.	A spring mass damper system has mass, m=2 kg and spring stiffness, k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb.	
Option A:	0.125	
Option B:	0.25	
Option C:	1.125	
Option D:	3.125	
Q9.	Calculate gyroscopic couple acting on a disc which has radius of 135 mm. Angular and precessional velocities are 15 rad/s and 7 rad/s respectively. Assume density = 7810 kg/m^3 and thickness of disc = 30 mm.	
Option A:	12.83 Nm	
Option B:	10.99 Nm	
Option C:	11 Nm	
Option D:	Incomplete data	
Q10.	There are two dampers which are connected in parallel combination and placed between the moving parts of machine having maximum relative velocity of 2 m/s. Find the maximum damping force exerted by the combination if damping coefficient of the dampers are 7 N-s/m and 14 N-s/m.	
Option A:	4.67 N	
Option B:	10.5 N	
Option C:	21 N	
Option D:	42 N	
Q11.	For isochronous Hartnell governor	
Option A:	(mg + S1)/(mg + S2) = r1/r2	
Option B:	(mg - S1)/(mg - S2) = r2/r1	
Option C:	S1/S2 = r1/r2	
Option D:	S2/S1 = r1/r2	
Q12.	Effort of a governor is the:	
Option A:	mean force exerted at the sleeve for a given percentage change of speed	
Option B:	work done at the sleeve for maximum equilibrium speed	
Option C:	mean force exerted at the sleeve for maximum equilibrium speed	
Option C. Option D:	work done at the sleeve for minimum equilibrium speed	
Option D.	work done at the sieeve for infilitinum equilibrium speed	
Q13.	The engine of an aeroplane rotates in clockwise direction when seen from the tail	

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Examination 2020 under cluster 4 (1 CE)		
end and the aeroplane takes a turn to the right. The effect of gyroscopic couple on the aeroplane will be:		
to dip the nose and tail		
to raise the nose and tail		
to raise the nose and dip of the tail		
to dip the nose and raise the tail		
A couple M of magnitude 1.5 kN-m is applied to the crank of the engine system shown in figure below. What is the force P required to hold the system in equilibrium?		
50 mm A M C P		
10 I-M		
19 kN		
20 kN		
21 kN		
22 kN		
A vibrometer having a natural frequency of 4 rad/s and $\xi = 0.3$ is attached to a structure that performs a harmonic motion. If the difference between the maximum and the minimum recorded values is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 44 rad/s.		
3.82 mm		
3.90 mm		
3.97 mm		
4.05 mm		
In vibration isolation system, if $(\omega/\omega n) > 1$, then phase difference between the transmitted force and the disturbing force is degrees.		
0		
90		
180		
270		
Vibrometer is a natural frequency transducer.		
High		
Low		
Zero		
Negative		
For experiencing the least vibrations, a driver should drive his vehicle at speed.		

Option A:	equal to resonance speed		
Option B:	less than resonance speed		
Option C:	between frequency ratio of 1 to $\sqrt{2}$		
Option D:	greater than frequency ratio of $\sqrt{2}$		
Q19.	In order to have a complete balance of the several revolving masses in different planes,		
Option A:	the resultant force must be zero		
Option B:	the resultant couple must be zero		
Option C:	both the resultant force and couple must be zero		
Option D:	reciprocating forces must be zero		
Q20.	Multi-cylinder engines are desirable because		
Option A:	balancing problems & flywheel size are reduced		
Option B:	only balancing problems are reduced		
Option C:	only flywheel size is reduced		
Option D:	flywheel size remains the same		
1			
Q21.	Let the disturbing mass be 100 kg and the radius of rotation be 10 cm and the rotation speed be 50 rad/s, then calculate the centrifugal force in kN.		
Option A:	50		
Option B:	25		
Option C:	50,000		
Option D:	25,000		
Q22.	What is NOT the effect of unbalanced forces?		
Option A:	Load on bearings		
Option B:	Dangerous vibrations		
Option C:	Stresses in various members		
Option D:	Violation of conservation of mass principle		
Option D.	Violation of conservation of mass principle		
Q23.	Rotating shaft tends to vibrate violently at whirling speeds because		
Option A:	the shaft is rotating at varying speeds		
Option B:	bearing center line coincide with the shaft axis		
Option C:	the system is unbalanced		
Option D:	resonance is caused		
option 2.	Tesonance is easied		
Q24.	When a disc is supported in-between a shaft, the critical speed of the shaft is		
~- ··	equal to natural frequency of the system in		
Option A:	longitudinal vibrations		
Option B:	transverse vibrations		
Option C:	non-linear vibrations		
Option D:	torsional vibrations		
<u> </u>			
Q25.	Which among the following parameters is NOT used to measure vibration?		
Option A:	Frequency		
Option B:	Phase		
Option C:	Amplitude		
Sprion C.			

Option D:	Static Deflection

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: **Rev2016** Examination: Third Year **Semester V**

Course Code: MEC504 and Course Name: Dynamics of Machinery

Time: 1 hour Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	С
Q3.	В
Q4	В
Q5	D
Q6	A
Q7	A
Q8.	A
Q9.	A
Q10.	D
Q11.	A
Q12.	A
Q13.	D
Q14.	С
Q15.	С
Q16.	С
Q17.	В
Q18.	D
Q19.	С
Q20.	A
Q21.	В
Q22.	D
Q23.	D
Q24.	В
Q25.	D