Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: MEC503 and Course Name:Heat Transfer Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

0.1			
Q1.	A hollow sphere of inner radiaus 5 cm and outer radius 8 cm. temperature of		
	inner surface is 363K and outer surface is 315K. The conductivity of sphere		
	material is 2.48 W/mK Its heat transfer rate is:		
Option A:	180 W		
Option B:	200 W		
Option C:	100 W		
Option D:	150 W		
Q2.	A sphere ($k = 12 \text{ W/mK}$) with mean diameter of 4 cm and initially at 25 deg C is		
	placed in a boilingwater for 4 minutes. Biot number is 0.0694. The heat transfer coefficient is		
Option A:	145 W/m^2K		
Option B:	165 W/m^2K		
Option C:	134 W/m^2K		
Option D:	125 W/m^2K		
орион В.	125 William		
Q3.	In a infinitely long fin, base temperature is 300 deg C, ambient temperature is 30		
	deg C, heat transfer coeficient is 30.17 W/mK, perimeter is 0.046 m, cross section		
	is 9 x 10^-5 m^2, temperature at a distance of 0.38 m is		
Option A:	40 deg C		
Option B:	50 deg C		
Option C:	58 deg C		
Option D:	62 deg C		
Q4.	There are two thermal resistances. The equivalelt total thermal resistances when		
V	connected in parrallel is 0.147 and when connected in series 1.066. The indivsual		
	values of thes resistances would be		
Option A:	0.176 and 0.89.		
Option B:	0.234 and 0.58		
Option C:	0.415 and 0.22		
Option D:	0.125 and 0.25		
-			
Q5.	Conductive resistance 0.142 K/Win a 10 cm thick wall what is conductivity if		
	surface area is unity?		
Option A:	0.085 W/mK		
Option B:	0.07 W/mK		
Option C:	0.09 W/mK		

Max. Marks: 50

Option D:	0.1 W/mK		
T			
Q6.	Sun's heat reaching the earth is an example of		
Option A:	Convection		
Option B:	Conduction		
Option C:	Radiation		
Option D:			
1			
Q7.	A room air temperature 300K. The outside air temperature is 313 K. The inside as well as outside convection coefficient is 10W/m^2K. The heat transfer rate through the wall per unit area is: 16.49 W/m^2.(Take thickness of the wall as 30 cm). The enductivity of brick materials is		
Option A:	0.85 W/mK		
Option B:	0.51 W/mK		
Option C:	0.32 W/mK		
Option D:	0.10 W/mK		
option 2.			
Q8.	The critical radius of insulation for a cylinder equal to ? k = thermal conductivity		
	in W/m-K, h = heat transfer coefficient in W/m^2K		
Option A:	2kh		
Option B:	2k/h		
Option C:	k/h		
Option D:	2h/k		
P			
Q9.	In a lumped parameter analysis at a particular instant body temperature is 305.62 K Biot number is 0.007143, ambient temperature is 20 deg C. The initial temperatue 363 K, Fourier number is nearest to		
Option A:	312		
Option B:	451		
Option C:	240		
Option D:	402		
Q10.	A 300 mm diameter sphere of conductivity 42 W/mK is exposed to an air flow (convection coefficient 120W/m^2K) In this case which of the following is correct		
Option A:	Bi<0.1 and Lumped parameter is applicable		
Option B:	Bi>0.1 and Lumped parameter is not applicable		
Option C:	Bi<0.1 and Lumped parameter is not applicable		
Option D:	Lumped parameter is not applicable irrepective of Bi		
Q11.	Copper has high thermal conductivity because of		
Option A:	Free electrons		
Option B:	Phonons		
Option C:	Transparency		
Option D:	density		

012	Ti d 1 d (d d 1 d D 1000 1 l d 0015		
Q12.	The thermal entry length of the tube with the Re 1000 and diameter 0.015m		
O-4: A	Prandtl number 3.91, is		
Option A:	entry length is 2.9m		
Option B:	entry length is 1m		
Option C:	entry length is 0.1 m		
Option D:	entry length is 0.2 m		
0.1.2			
Q13.	Water at 20 deg C flows through the pipe of diameter 0.01m at uniform velocity		
	0.5 m/s. Length of the pipe is 6.3 m. What constant heat flux to be applied over		
0 1 1	the pipe to heat the water to 80 deg C:		
Option A:	80kW/m^2		
Option B:	62kW/m^2		
Option C	50kW/m^2		
Option D:	100kW/m^2		
Q14.	In a flow over a flat plate of surface area 9m ² is maintained at constant		
	temperature 140 deg C, the ambient temperature is 20 deg C, Re=7x 10^5 and		
	Pr=0.7154. Nusselt number for a laminar flow is given by 0.664Re^0.5*Pr^0.33		
	and for a turbulent flow is given by 0.037Re\0.8*Pr\0.33. Take conductivity as		
	0.02953 W/mK and length as 1.59 m.The heat loss rate is:		
Option A:	10 kW		
Option B:	500W		
Option C:	1kW		
Option D:	31.5 kW		
Q15.	fluid having temperature equal to that of surface over which it is flowing		
Option A:	Will have no hydrodynamic boundary layer		
Option B:	Will have no thermal boundary layer		
Option C:	Will have thermal boundary layer developing after the hydrodynaic		
Option D:	Will have thermal boundary layer always greater than hydrodynamic		
016	Nusselt number is a function of		
Q16.	Prandtl number in free convection		
Option A:			
Option B:	Prandtl number and Reynolds number in Free convection		
Option C:	Raleigh number in Free convection		
Option D:	Grashof number and Prandtl number in forced convection		
Q17.	Ratio of Reflected radiation to irradiation		
Option A:	Reflectivity		
Option B:	Absorptivity		
Option C:	Transmisivity		
Option D:	Emissivity		
· r			

Q18.	Emissive power of a body is proportional to		
Option A:	Volume		
Option B:	Fourth power of its pressure		
Option C:	Density		
Option D:	: Fourth power of its absolute temperature		
Q19.	If emisivity is one then the surface is called as		
Option A:	opaque body		
Option B:	black body		
Option C:	grey body		
Option D:	white body		
Q20.	According to weins law prodct of maximum wavelength and absolute temperature		
	is		
Option A:	5.57 mK		
Option B:	0.0029 mK		
Option C:	2900 mK		
Option D:	4.965 mK		
Q21.	Correction is applied to LMTD forflow		
Option A:	Parallel		
Option B:	counter		
Option C:	cross		
Option D:	multiphase		
Q22.	For same inlet and outlet temperature of hot and cold fluids the LMTD is		
Option A:	Greater for parallel flow thancounter flow		
Option B:	Greater for counter flow than paralell flow		
Option C:	Same for both prallel flow and counter flow		
Option D:	Depends on properties of fluid		
1			
Q23.	If boiler NTU is 2.133 its effectiveness is		
Option A:	0.66		
Option B:	0.77		
Option C:	0.88		
Option D:	0.56		
ı			
Q24.	NTU of heat exchanger is (if overall heat transfer coefficient is 100 W/m^2 K.		
	Area is 48 m ² , Cmin=4400)		
00Option	2.1		
A:			
	1.09		
-	3.2		
	2.3		
1 *	2.1 1.09 3.2		

Q25.	Scale heat transfer coeficient is	
Option A:	Reciprocal of fouling factor	
Option B:	Reciprocal of over all heat transfer coefficient of dirty ppipe	
Option C:	Reciprocal of diffusivity of the scaling	
Option D:	Eaqul to difference of over all heat transfer coefficient of clean pipe and dirty pipe	

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: MEC503 and Course Name: Heat Transfer

Time: 1 hour Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	D
Q3.	А
Q4	А
Q5	В
Q6	С
Q7	В
Q8.	С
Q9.	С
Q10.	В
Q11.	А
Q12.	А
Q13.	С
Q14.	D
Q15.	В
Q16.	С
Q17.	А
Q18.	D
Q19.	В
Q20.	В
Q21.	С
Q22.	В
	С
Q23. Q24.	В

Q25.	Α