University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: ECC504 and Course Name: Discrete Time Signal Processing
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which one is error due to finite word length registers?
Option A:	Input quantization error
Option B:	Mean square error
Option C:	Square error
Option D:	Measurement error
Q2.	In floating point arithmetic if $\mathrm{X}=\mathrm{M} 1 \times 2^{\wedge}\{\mathrm{c} 1\}$ and $\mathrm{Y}=\mathrm{M} 2 \times 2^{\wedge}\{\mathrm{c} 2\}$, Where $\mathrm{M} 1, \mathrm{M} 2$ are mantissa and $\mathrm{c} 1, \mathrm{c} 2$ are exponents. Then $\mathrm{X} \times \mathrm{Y}$ is ?
Option A:	$(\mathrm{M} 1+\mathrm{M} 2) 2^{\wedge}\{\mathrm{c} 1\}$
Option B:	$(\mathrm{M} 1+\mathrm{M} 2) 2^{\wedge}\{\mathrm{c} 1+\mathrm{c} 2\}$
Option C:	$\mathrm{M} 1+\mathrm{M} 2$
Option D:	$(\mathrm{M} 1+\mathrm{M} 2) 2^{\wedge}\{\mathrm{c} 1-\mathrm{c} 2\}$
Q3.	As compare to floating point arithmetic fixed point arithmetic is
Option A:	slow operation
Option B:	Overflow does not arise
Option C:	Fast operation
Option D:	More expensive
Q4.	Limit cycle occurs as a result of
Option A:	Truncation

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option B:	Round off
Option C:	Quantization effect in multiplication
Option D:	Scaling
Q5.	Fixed point arithmetic round off errors occurs only for
Option A:	Addition
Option B:	Addition and multiplication
Option C:	Division
Option D:	Multiplication
Q6.	What is the full form of DTMF?
Option A:	Dual-Tone Multi frequency
Option B:	Dual Telephony Multiple Frequency
Option C:	Dual-Tone Minimum Frequency
Option B:	Power radiating ability of the radar
Option D:	Digital Tone Minimum Frequency
Q7.	Sthe
Option A:	Monostatic radar
Option B:	Bistatic radar
antenna are called:	
	Monopole radar
	Dipole radar

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	Amount of energy scattered by unwanted objects
Option D:	Cross section of radar area through which energy is emitted
Q9.	The cost of the digital processors is cheaper because
Option A:	Processor allows time sharing among a number of signals
Option B:	The hardware is cheaper
Option C:	Require less maintenance
Option D:	Less power consumption
Q10.	In the process of the ECG waveform, the detection filter removes Option A: Baseline wander, motion noise Option B: Muscle artifact, motion noise Option C: Low frequency noise, motion noise Option D: Baseline wander, muscle artifact Option A: Option A: Option B: M zeros are appended at last of each data block Option D: M-1 zeros are appended at first of each data blockM-1 zeros are appended at last of each data block

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option D:	$\mathrm{N}(\mathrm{N}+1) / 2$
Q13.	If $X(k)$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then what is the DFT of $\mathrm{x}^{*}(\mathrm{n})$?
Option A:	X (N -k)
Option B:	$\mathrm{X}^{*}(\mathrm{k})$
Option C:	$\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
Option D:	X ($\mathrm{n}+\mathrm{k}$)
Q14.	What is the DFT of the four point sequence $\times(\mathrm{n})=\{1,2,3,4\}$?
Option A:	\{10,-2+2j-2,-2-2j\}
Option B:	\{6,-2-2j, 2,-2+2j\}
Option C:	$\{10,-2-2 j,-2,-2+2 j\}$
Option D:	\{-10,-2+2j, -2,-2-2j\}
Q15.	If $\mathrm{X}(\mathrm{n})$ and $\mathrm{X}(\mathrm{k})$ are an N -point DFT pair, then $\mathrm{X}(\mathrm{k}+\mathrm{N})=$?
Option A:	X (-k)
Option B:	$`-X(k)$
Option C:	X (k)
Option D:	X ($\mathrm{n}+\mathrm{k}$)
Q16.	With an increase in the value of M, the height of each side lobe
Option A:	Do not vary
Option B:	Does not depend on value of M
Option C:	Decreases
Option D:	Increases
Q17.	What is the value of $\mathrm{h}(\mathrm{M}-1 / 2)$ if the unit sample response is anti-symmetric?
Option A:	0
Option B:	1
Option C:	-1
Option D:	Infinity (∞)
Q18.	What is the number of filter coefficients that specify the frequency response for $\mathrm{h}(\mathrm{n})$ symmetric?

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option A:	(M-1)/2 when M is odd and $\mathrm{M} / 2$ when M is even
Option B:	(M-1)/2 when M is even and $\mathrm{M} / 2$ when M is odd
Option C:	$(\mathrm{M}+1) / 2$ when M is even and $\mathrm{M} / 2$ when M is odd
Option D:	$(\mathrm{M}+1) / 2$ when M is odd and $\mathrm{M} / 2$ when M is even
Q19.	What is the peak side lobe (in dB) for a rectangular window?
Option A:	-13
Option B:	-27
Option C:	-32
Option D:	-58
Q20.	Which of the following window function of causal system is given by $h(n)=0.42$ $-0.5 \cos (2 \pi n / M-1)+0.08 \cos (2 \pi n / M-1)) ; 0 \leq \mathrm{n} \leq \mathrm{M}-1$?
Option A:	Hamming window
Option B:	Hanning window
Option C:	Barlett window
Option D:	Blackman window
Q21.	The mapping in the Bilinear transformation method is
Option A:	One-to-many mapping
Option B:	Many-to-one mapping
Option C:	Many-to-many mapping
Option D:	One-to-one mapping
Q22.	If the Analog filter to digital filter conversion technique is to be effective, then the left half plane of s-plane should be mapped in to
Option A:	Outside of unit circle
Option B:	Inside unit circle
Option C:	Outside of unit ellips
Option D:	Inside unit ellips
Q23.	In the impulse-invariant transformation method the relationship between the analog frequency Ω and digital frequency ω is given by
Option A:	$\omega=\Omega+\mathrm{T}$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option B:	$\omega=\Omega^{2} T$
Option C:	$\omega=\Omega T$
Option D:	$\omega=\Omega T^{2}$
Q24.	What is the number of maxima present in the pass band of magnitude frequency response of a low pass chebyshev-l filter of order 5?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q25.	A low pass Butterworth filter meet the following specification passband frequency is 200 rad/sec,stopband frquency is 600 rad/sec,pass band attenuation is 1 dB and stop band attenuation is 30 dB. Find order N of low pass Butterworth Filter
Option A:	$\mathrm{N}=7$
Option B:	$\mathrm{N}=4$
Option C:	$\mathrm{N}=1$
Option D:	$\mathrm{N}=2$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Electronics \& Telecommunication Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: ECC504 and Course Name: Discrete Time Signal Processing
Time: 1 hour

Question	Correct Option (Enter either ' A ' or ' \mathbf{B} ' or 'C' or 'D')
Q1.	A
Q2.	B
Q3.	C
Q4	D
Q5	E
Q6	A
Q7	A
Q8.	A
Q9.	A
Q10.	C
Q11.	C
Q12.	D
Q13.	C
Q14.	A
Q15.	C
Q16.	D
Q17.	A
Q18.	D
Q19.	A
Q20.	B
Q21.	D
Q22.	B
Q23.	C
Q24.	C
Q25.	B

