Examination 2020 under cluster 4 (PCE)

Program: BE Electronics & Telecommunication Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V se Code: ECC504 and Course Name: Discrete Time Signal Proces

Course Code: ECC504 and Course Name: Discrete Time Signal Processing ur Max. Marks: 50

Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which one is error due to finite word length registers?
Option A:	Input quantization error
Option B:	Mean square error
Option C:	Square error
Option D:	Measurement error
Q2.	In floating point arithmetic if X= M1 x 2^{c1} and Y= M2 x 2^{c2}, Where M1 ,M2 are mantissa and c1,c2 are exponents. Then X x Y is ?
Option A:	(M1+ M2) 2^{c1}
Option B:	(M1+ M2) 2^{c1+c2}
Option C:	M1+ M2
Option D:	(M1+ M2) 2^{c1- c2}
Q3.	As compare to floating point arithmetic fixed point arithmetic is
Option A:	slow operation
Option B:	Overflow does not arise
Option C:	Fast operation
Option D:	More expensive
Q4.	Limit cycle occurs as a result of
Option A:	Truncation

Option B:	Round off	
Option C:	Quantization effect in multiplication	
Option D:	Scaling	
Q5.	Fixed point arithmetic round off errors occurs only for	
Option A:	Addition	
Option B:	Addition and multiplication	
Option C:	Division	
Option D:	Multiplication	
O6.	What is the full form of DTMF?	
Option A:	Dual-Tone Multi frequency	
Option B:	Dual Telephony Multiple Frequency	
Option C:	Dual-Tone Minimum Frequency	
Option D:	Digital Tone Minimum Frequency	
~ 7		
Q7.	The radar in which both transmission and reception is done using the same antenna are called:	
Option A:	Monostatic radar	
Option B:	Bistatic radar	
Option C:	Monopole radar	
Option D:	Dipole radar	
Q8.	7The term radar cross section defines the:	
Option A:	Scattering ability of the target	
Option B:	Power radiating ability of the radar	

Option C:	Amount of energy scattered by unwanted objects	
Option D:	Cross section of radar area through which energy is emitted	
Q9.	The cost of the digital processors is cheaper because	
Option A:	Processor allows time sharing among a number of signals	
Option B:	The hardware is cheaper	
Option C:	Require less maintenance	
Option D:	Less power consumption	
Q10.	In the process of the ECG waveform, the detection filter removes and	
Option A:	Baseline wander, motion noise	
Option B:	Muscle artifact, motion noise	
Option C:	Low frequency noise, motion noise	
Option D:	Baseline wander, muscle artifact	
Q11.	Which of the following is true in case of Overlap add method?	
Option A:	M zeros are appended at last of each data block	
Option B:	M zeros are appended at first of each data block	
Option C:	M-1 zeros are appended at last of each data block	
Option D:	M-1 zeros are appended at first of each data block	
Q12.	How many complex multiplications are required to compute X(k)?	
Option A:	N(N+1)	
Option B:	N(N-1)/2	
Option C:	N2/2	

Option D:	: N(N+1)/2			
012	If $Y(k)$ is the N point DET of a sequence $y(n)$, then what is the DET of $y^*(n)^2$			
Q15.	(κ) is the N-point DFT of a sequence x (n), then what is the DFT of x ⁻ (n)?			
Option A:	X (N-k)			
Option B:	X*(k)			
Option D.				
Option C:	X*(N-k)			
Option D:	X (n+k)			
014.	What is the DFT of the four point sequence x(n)={1,2,3,4}?			
Option A:	{10,-2+2j-2,-2-2j}			
Option B:	{6,-2-2j,2,-2+2j}			
Option C:	{10,-2-2j,-2,-2+2j}			
Option D:	{-10,-2+2j,-2,-2-2j}			
1				
Q15.	If x (n) and X (k) are an N-point DFT pair, then X (k+N) =?			
Option A:	X (-k)			
1				
Option B:	`-X (k)			
Option C:	X (k)			
Option D:	X (n+k)			
016	With an increase in the value of \mathbf{M} , the height of each side lobe			
Q10.	Do not vary			
Option B:	Does not depend on value of M			
Option D:	Decreases			
Option D:	Increases			
Option D.				
Q17.	What is the value of $h(M-1/2)$ if the unit sample response is anti-symmetric?			
Option A:	0			
Option B [.]	1			
Option C:	1			
Option D:	Infinity (∞)			
018	What is the number of filter coefficients that specify the frequency response for			
×	h(n) symmetric?			

Option A:	(M-1)/2 when M is odd and M/2 when M is even		
Option B:	(M-1)/2 when M is even and M/2 when M is odd		
Option C:	(M+1)/2 when M is even and M/2 when M is odd		
Option D:	(M+1)/2 when M is odd and M/2 when M is even		
1			
Q19.	What is the peak side lobe (in dB) for a rectangular window?		
Option A:	-13		
Option B:	-27		
Option C:	-32		
Option D:	-58		
Q20.	Which of the following window function of causal system is given by $h(n)=0.42 - 0.5 \cos (2\pi n / M-1) + 0.08 \cos (2\pi n / M-1)); 0 \le n \le M-1?$		
Option A:	Hamming window		
Option B:	Hanning window		
Option C:	Barlett window		
Option D:	Blackman window		
Q21.	The mapping in the Bilinear transformation method is		
Option A:	One-to-many mapping		
Option B:	Many-to-one mapping		
Option C:	Many-to-many mapping		
Option D:	One-to-one mapping		
Q22.	If the Analog filter to digital filter conversion technique is to be effective, then the left half plane of s-plane should be mapped in to		
Option A:	Outside of unit circle		
Option B:	Inside unit circle		
Option C:	Outside of unit ellips		
Option D:	Inside unit ellips		
Q23.	In the impulse-invariant transformation method the relationship between the analog frequency Ω and digital frequency ω is given by		
Option A:	ω=Ω+Τ		

Option B:	$\omega = \Omega^2 T$
Option C:	ω=ΩΤ
Option D:	$\omega = \Omega T^2$
Q24.	What is the number of maxima present in the pass band of magnitude frequency response of a low pass chebyshev-I filter of order 5?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q25.	A low pass Butterworth filter meet the following specification passband frequency is 200rad/sec,stopband frquency is 600 rad/sec,pass band attenuation is 1 dB and stop band attenuation is 30 dB.Find order N of low pass Butterworth Filter
Option A:	N=7
Option B:	N=4
Option C:	N=1
Option D:	N=2

Examination 2020 under cluster 4 (PCE)

Program: BE Electronics & Telecommunication Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V Course Code: ECC504 and Course Name: Discrete Time Signal Processing

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	В
Q3.	С
Q4	D
Q5	Е
Q6	А
Q7	А
Q8.	А
Q9.	А
Q10.	С
Q11.	С
Q12.	D
Q13.	С
Q14.	А
Q15.	С
Q16.	D
Q17.	А
Q18.	D
Q19.	А
Q20.	В
Q21.	D
Q22.	В
Q23.	С
Q24.	С
Q25.	В