University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: Third Year Semester V

Course Code: ECC503 and Course Name: Electromagnetic Engineering

Time: 1 hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks .

Q1.	The phase shift in electric & magnetic fields in an electromagnetic wave is given		
	by		
Option A:	Phase Constant		
Option B:	Attenuation constant		
Option C:	Propagation Constant		
Option D:	Intrinsic Impedance		
Q2.	When the electric field becomes zero $E = 0$, then which of the following relations		
	hold true?		
Option A:	E = P		
Option B:	D=P		
Option C:	$\mathbf{B} = \mathbf{P}$		
Option D:	H = P		
Q3.	The phenomenon of skin effect is deliberately used in		
Option A:	Electrostatic shielding		
Option B:	Polywells		
Option C:	Ink jet printer		
Option D:	RF MEMS		
Q4.	Two identical circular coaxial coils carry the same current I but in opposite		
	directions. The magnitude of magnetic field B at a midpoint of the axis is		
Option A:	Twice that produced by one coil		
Option B:	Same as that produced by one coil		
Option C:	Zero		
Option D:	Half that produced by one coil		
Q5.	The work done by a charge of 10μ C with a potential of 4.386V is		
Option A:	43.86µJ		
Option B:	32.6µJ		
Option C:	54.68 µJ		
·			
Option D:	65.684 μJ		

Q6.	A non-magnetic medium has an intrinsic impedance of 250/_35°. The loss			
-	tangent of the medium is			
Option A:	0.5			
Option B:	1.732			
Option C:	2.74			
Option D:	0.7			
Q7.	Find the power reflected in a transmission line, when the reflection coefficient			
	and input power are 0.45 and 18V respectively.			
Outien A.	2 (45			
Option A:	3.645			
Option B:	6.453 4.563			
Option C: Option D:	5.463			
Option D:	5.405			
Q8.	The intrinsic impedance for a lossless nonmagnetic medium with relative			
Q0.	dielectric constant of 2.53 is			
Option A:	300Ω			
Option B:	237Ω			
Option C:	377Ω			
Option D:	474Ω			
1				
Q9.	Which of the following theorem convert volume integral to surface integral?			
Option A:	Divergence theorem			
Option B:	Stoke's theorem only			
Option C:	Green's theorem only			
Option D:	Stoke's and Green's theorem			
010	The skin donth of conductor with attenuation constant of 6 Noners/mis			
Q10.	The skin depth of conductor with attenuation constant of 6 Nepers/m is			
Option A:	12			
Option B:	36			
Option D:	6			
Option D:	1/6			
-r				
Q11.	For a lossless transmission line			
Option A:	$R = 0; G \neq 0$			
Option B:	L = C = 0			
Option C:	$\mathbf{R} = \mathbf{G} = 0$			
Option D:	$R \neq 0; G \neq 0$			
Q12.	Calculate the emf when a coil of 100 turns is subjected to a flux rate of 0.3			

	tesla/sec.		
Option A:	3		
Option B:	-30		
Option C:	-300		
Option D:	-400		
-			
Q13.	Memristor behaves as		
Option A:	Charge controlled capacitor		
Option B:	Nonlinear resistor		
Option C:	Inductor		
Option D:	Diode		
Q14.	Calculate the Electric dipole moment of a dipole with equal charges 4C and -4C separated by a distance of 2cm.		
Option A:	0.04 C-m.		
Option B:	0.08 C-m.		
Option C:	0.06 C-m.		
Option D:	0.02 C-m.		
•			
Q15.	Inside a good conductor, the magnetic field lags electric field by		
Option A:	0°		
Option B:	30°		
Option C:	45°		
Option D:	60°		
-			
Q16.	The correct Laplace's equation is		
Option A:	$\nabla^2 V = -\frac{\rho_v}{c}$		
Option B:	$\nabla^2 V = 0$		
Option C:			
option e.	$V^2 V = -\frac{1}{\varepsilon}$		
Option D:	$\nabla^2 V = \frac{\rho_v}{\varepsilon}$ $\nabla^2 V = E$		
_			
Q17.	The Poynting vector P is a power flow vector whose		
Option A:	direction is randomly oriented with the direction of wave propagation.		
Option B:	direction is same as the direction of wave propagation		
Option C:	direction is opposite to the direction of wave propagation		
Option D:	direction is perpendicular to the direction of wave propagation		
L			
Q18.	Find the characteristic impedance of a quarter wave with input and load impedances given by 50 and 25 respectively		

Option A:	50			
Option B:	25			
Option C:	75			
Option D:	35.5			
Option D.				
Q19.	Find the electric potential for an electric field 10 V/m at a distance of 2m.			
Option A:	20 V			
Option B:	10 V			
Option C:	15 V			
Option D:	18 V			
000				
Q20.	The time domain expression for the magnetic field of a plane wave travelling in a non-magnetic medium is given by $\mathbf{H}(\mathbf{y}, \mathbf{t}) = 2\cos(6\pi \times 10^8 \text{ t} - 10.2 \text{ y}) \text{ z}$ A/m. Find the direction of propagation of the wave.			
Option A:	y-direction			
Option B:	x-direction			
Option C:	z-direction			
Option D:	cannot be specified			
1				
Q21.	Ampere law states that,			
Option A:	Divergence of H is same as the flux			
Option B:	Curl of D is same as the current			
Option C:	Divergence of E is zero			
Option D:	Curl of H is same as the current density			
Q22.	When the length of the transmission line is same as that of the wavelength, then which condition holds good?			
Option A:	$Z_{in} = Z_0$			
Option B:	$\frac{Z_{ln} - Z_0}{Z_{ln} = Z_0 Z_L}$			
Option C:	$Z_L = Z_0$			
Option D:	$\frac{Z_L - Z_0}{Z_{in} = Z_L}$			
option D.	$Z_{ln} - Z_L$			
Q23.	Find the magnetic field of a finite current element with 2A current and height $1/2\pi$ is			
Option A:	1			
Option B:	2			
Option C:	3			
Option D:	4			
Q24.	The electric field intensity in polystyrene ($\epsilon r = 2.55$) filling the space between the plates of parallel plate capacitor is 10 kV/m. The distance between plates is 1.5mm. Calculate D.			

Option A:	137 nC/m ²
Option B:	225.4 nC/m^2
Option C:	300nC/m ²
Option D:	325 nC/m^2
Q25.	Transmission line characteristics repeats after every distance and inverts after
Q25.	Transmission line characteristics repeats after every distance and inverts after distance.
Q25. Option A:	
	distance.
Option A:	distance. $\lambda, \lambda/4$

University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Electronics & Telecommunication Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V Course Code: ECC503 and Course Name: Electromagnetic Engineering Time: 1 hour Max. Marks: 50 _____ _____

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	В
Q3.	А
Q4	С
Q5	А
Q6	С
Q7	А
Q8.	В
Q9.	А
Q10.	D
Q11.	С
Q12.	В
Q13.	В
Q14.	В
Q15.	С
Q16.	В
Q17.	В
Q18.	D
Q19.	А
Q20.	А
Q21.	D
Q22.	D
Q23.	А
Q24.	В
Q25.	В

University of Mumbai Examination 2020 under cluster 4 (PCE)