Program: BE Civil Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester V

Course Code: CEC503 and Course Name: Applied Hydraulics

Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The ratio of section factor and hydraulic depth in a trapezoidal section is 324/25, calculate the top width if the total wetted area of the channel is 24 m 2.
Option A:	4 m
Option B:	5 m
Option C:	6 m
Option D:	7 m
Q2.	When So > 0 and Yn < Yc, it is called as:
Option A:	Adverse
Option B:	Horizontal
Option C:	Critical
Option D:	Steep
Q3.	The angle made by resultant force with horizontal direction is given by,
Q4.	Guide blade angle is :
Option A:	Sine = Fx/Fy
Option B:	Cose $=$ Fx/Fy
Option C:	tane $=$ Fx/Fy
Option D:	tane $=$ Fy/Fx

Option A:	Angle made by absolute velocity at inlet with tangential direction of motion of vane
Option B:	Angle made by relative velocity at inlet with tangential direction of motion of vane
Option C:	Angle made by absolute velocity at outlet with tangential direction of motion of vane
Option D:	Angle made by relative velocity at outlet with tangential direction of motion of vane
Q5.	A 300 mm diameter pipe carries water under head of 10 m with velocity of $3.5 \mathrm{~m} / \mathrm{s}$ if axis of pipe turns through 45°, find magnitude of force in horizontal direction
Option A:	1040.44 N
Option B:	2056.25 N
Option C:	1279 N
Option D:	1463.25 N
Q6.	Let the top width of a rectangular channel be B and the depth be y, determine the hydraulic radius of the channel.
Option A:	By/ B+2y
Option B:	By/ B+y
Option C:	y
Option D:	By
Q7.	If a centrifugal pump has manometric head of 50 m , rotational speed of $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$, and discharge of $0.20 \mathrm{~m}^{3} / \mathrm{s}$ then specific speed of the pump is given by
Option A:	22
Option B:	24
Option C:	23.787

Option B:	$1 / 5$
Option C:	0
Option D:	∞
Q12.	The volumetric efficiency of a Francis turbine is given to be 90%. If the volume flow rate through the turbine is $25 \mathrm{~m} 3 / \mathrm{s}$. What is the flow rate of water over the runner blades (in m3/s)?
Option A:	20
Option B:	25
Option C:	22.5
Option D:	21.5
Q13.	Dimension of Torque is given by:
Option A:	$\left[M L^{2} T^{-3}\right]$
Option B:	$\left[M T^{-1}\right]$
Option C:	$\left[M L^{-2} T^{-2}\right]$
Option D:	$\left[M L^{2} T^{-2}\right]$
Option B:	Tail race
Option C:	Tail stock
Option A:	Among the following which turbine has least efficiency?
Option B:	Kaplan turbine
Option C:	Francis turbine
Option D:	Propeller turbine
	The pipe of large diameter which carries water from reservoir to the turbines is called as:
Head stock	
Option	

Option D:	Pen stock
Q16.	The discharge Q, through a small orifice of diameter D under a head H depends upon the density ρ of the liquid an its viscosity μ and the acceleration due to gravity g. In this phenomenon as per dimensional analysis one of the Pi(π) term is:
Option A:	$\frac{H}{D}$
Option B:	$\frac{H Q}{D \rho}$
Option C:	HD
Option D:	HDQ
	What is the purpose of a Draft tube?
Option A:	To prevent flow separation
Option B:	To avoid Pressure drag
Option C:	To prevent rejection of heat
Option B:	Whirl
Option D:	To increase efficiency
Q18.	The phenomenon involving free surface flows such as flow over spillways, weirs, sluices, channels etc are analyzed using which model law Option A: Froude's Model Law Option B: Euler's Model Law Option D: Meynold's Model Law

Option C:	Relative
Option D:	Parabolic
Q20.	Tangential flow, axial flow, radial flow turbines are classified based on?
Option A:	Type of energy at inlet
Option B:	Direction of flow through runner
Option C:	Head at inlet of turbine
Option D:	Specific speed of turbine
Q21.	Dimension of Dynamic Viscosity is given by:
Option A:	[M $L^{-1} T^{-1}$]
Option B:	[$M L T^{-1}$]
Option C:	[M $L^{-1} T^{-2}$]
Option D:	[M $\left.L^{2} T^{-2}\right]$
Q22.	The force exerted by the jet on the plate in the direction normal to the plate can be expressed as
Option A:	$\mathrm{Fn}=\rho \mathrm{V}^{2} \sin \theta$
Option B:	$\mathrm{Fn}=\rho \mathrm{V} \mathrm{V}^{2} \sin \theta \cos \theta$
Option C:	$\mathrm{Fn}=\rho \mathrm{aV}{ }^{2} \cos \theta$
Option D:	$\mathrm{Fn}=\rho \mathrm{aV} \sin \theta$
Q23.	The condition for maximum efficiency when a jet of water strikes series of vanes would be
Option A:	$\mathrm{V}=\mathrm{u} / 2$
Option B:	$\mathrm{u}=\mathrm{V} / 2$
Option C:	$\mathrm{V}=1 / 3 \mathrm{U}$
Option D:	$u=2.5 \mathrm{~V}$

Q24.	A jet of water of diameter 50 mm , having a velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a curved vane which is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet leaves the vane at an angle of 50° to the direction of motion of vane at outlet. The velocity of whirl at the out $\mathrm{V}_{\mathrm{w} 2}$ is
Option A:	$4.57 \mathrm{~m} / \mathrm{s}$
Option B:	$3.57 \mathrm{~m} / \mathrm{s}$
Option C:	$3 \mathrm{~m} / \mathrm{s}$
Option $\mathrm{D:}$	$2.5 \mathrm{~m} / \mathrm{s}$
Q25.	The relative velocity is achieved by the equation
Option $\mathrm{A}:$	$\mathrm{u}-\mathrm{V}_{1}$
Option B:	$\mathrm{V}_{1}-\mathrm{u}$
Option C:	$\mathrm{u}^{*} \mathrm{~V}_{1}$
Option D:	$\mathrm{u} / \mathrm{V}_{1}$

Program: BE Civil Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: CEC503 and Course Name: Applied Hydraulics

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	D
Q3.	D
Q4	A
Q5	B
Q6	A
Q7	C
Q8.	C
Q9.	A
Q10.	A
Q11.	A
Q12.	C
Q13.	D
Q14.	A
Q15.	D
Q16.	A
Q17.	A

Q18.	A
Q19.	D
Q20.	B
Q21.	A
Q22.	A
Q23.	B
Q24.	B
Q25.	B

