Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: CEC503 and Course Name: Applied Hydraulics

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The ratio of section factor and hydraulic depth in a trapezoidal section is 324/25, calculate the top width if the total wetted area of the channel is 24m2.
Option A:	4m
Option B:	5m
Option C:	6m
Option D:	7m
Q2.	When So > 0 and Yn < Yc, it is called as:
Option A:	Adverse
Option B:	Horizontal
Option C:	Critical
Option D:	Steep
Q3.	The angle made by resultant force with horizontal direction is given by,
Option A:	Sinø = Fx/Fy
Option B:	Cose = Fx/Fy
Option C:	tane = Fx/Fy
Option D:	tane = Fy/Fx
Q4.	Guide blade angle is :

Option A:	Angle made by absolute velocity at inlet with tangential direction of motion of vane
Option B:	Angle made by relative velocity at inlet with tangential direction of motion of vane
Option C:	Angle made by absolute velocity at outlet with tangential direction of motion of vane
Option D:	Angle made by relative velocity at outlet with tangential direction of motion of vane
Q5.	A 300 mm diameter pipe carries water under head of 10 m with velocity of 3.5m/s if axis of pipe turns through 45°, find magnitude of force in horizontal direction
Option A:	1040.44 N
Option B:	2056.25 N
Option C:	1279 N
Option D:	1463.25 N
Q6.	Let the top width of a rectangular channel be B and the depth be y, determine the hydraulic radius of the channel.
Option A:	By/ B+2y
Option B:	Ву/ В+ у
Option C:	У
Option D:	Ву
Q7.	If a centrifugal pump has manometric head of 50m, rotational speed of 1000r.p.m,and discharge of 0.20m ³ /s then specific speed of the pump is given by
Option A:	22
Option B:	24
Option C:	23.787

Option D:	25
Q8.	The component of a Centrifugal pump Which convert mechanical energy into hydraulic energy
Option A:	Impeller
Option B:	Casing
Option C:	Runner
Option D:	pipes
Q9.	A pipe of 300 mm diameter conveying 0.5 m ³ / s of water has a right angled bend in a horizontal plane. Find the vertical force exerted on bend if the pressure at inlet and outlet bend are 24.525 N/cm ² and 23.544 N/cm ²
Option A:	3538.66 N
Option B:	6593.37 N
Option C:	4659.37 N
Option D:	2365.37 N
Q10.	What is the depth of buckets of Pelton wheel ?
Option A:	1.2 times diameter of jet
Option B:	1.3 times diameter of jet
Option C:	1.4 times diameter of jet
Option D:	1.5 times diameter of jet
Q11.	Consider steady laminar incompressible viscous flow through a straight circular pipe of constant cross – sectional area at a Reynolds number of 5. The ratio of inertia force to viscous force on a fluid particle is
Option A:	5

Option C: 0 Option D: ∞ Q12. The volumetric flow rate throu	c efficiency of a Francis turbine is given to be 90%. If the volume ugh the turbine is 25 m3/s. What is the flow rate of water over the (in m3/s)?
Option D: ∞ Q12. The volumetric flow rate throu	c efficiency of a Francis turbine is given to be 90%. If the volume ugh the turbine is 25 m3/s. What is the flow rate of water over the (in m3/s)?
Q12. The volumetric flow rate throu	c efficiency of a Francis turbine is given to be 90%. If the volume ugh the turbine is 25 m3/s. What is the flow rate of water over the (in m3/s)?
runner blades	
Option A: 20	
Option B: 25	
Option C: 22.5	
Option D: 21.5	
Q13. Dimension of T	Forque is given by:
Option A: $[M L^2 T^{-3}]$	
Option B: $[M LT^{-1}]$	
Option C: $[M L^{-2}T^{-2}]$	
Option D: $[M L^2 T^{-2}]$	
Q14. Among the foll	owing which turbine has least efficiency?
Option A: Pelton turbine	
Option B: Kaplan turbine	
Option C: Francis turbine	2
Option D: Propeller turbi	ne
Q15. The pipe of lar called as:	ge diameter which carries water from reservoir to the turbines is
Option A: Head stock	
Option B: Tail race	
Option C: Tail stock	

Option D:	Pen stock
Q16.	The discharge Q, through a small orifice of diameter D under a head H depends upon the density ρ of the liquid an its viscosity μ and the acceleration due to gravity g. In this phenomenon as per dimensional analysis one of the Pi(π) term is:
Option A:	$\frac{H}{D}$
Option B:	$\frac{HQ}{D\rho}$
Option C:	HD
Option D:	HDQ
Q17.	What is the purpose of a Draft tube?
Option A:	To prevent flow separation
Option B:	To avoid Pressure drag
Option C:	To prevent rejection of heat
Option D:	To increase efficiency
Q18.	The phenomenon involving free surface flows such as flow over spillways, weirs, sluices, channels etc are analyzed using which model law
Option A:	Froude's Model Law
Option B:	Euler's Model Law
Option C:	Reynold's Model Law
Option D:	Mach's Model Law
Q19.	Which among the following velocities cannot be found using the velocity triangle?
Option A:	Tangential
Option B:	Whirl

Option C:	Relative
Option D:	Parabolic
Q20.	Tangential flow, axial flow, radial flow turbines are classified based on?
Option A:	Type of energy at inlet
Option B:	Direction of flow through runner
Option C:	Head at inlet of turbine
Option D:	Specific speed of turbine
Q21.	Dimension of Dynamic Viscosity is given by:
Ontion A:	$[M L^{-1}T^{-1}]$
Option B:	$\begin{bmatrix} M & D & T \end{bmatrix}$
Option C:	$\begin{bmatrix} M & D \\ I \end{bmatrix}$
Option C:	$\begin{bmatrix} M & L & I \end{bmatrix}$
Option D.	
Q22.	The force exerted by the jet on the plate in the direction normal to the plate can be expressed as
Option A:	$Fn = \rho a V^2 sin \theta$
Option B:	$Fn = \rho a V^2 sin \theta cos \theta$
Option C:	$Fn = \rho a V^2 cos \theta$
Option D:	$Fn = \rho a V sin \theta$
Q23.	The condition for maximum efficiency when a jet of water strikes series of vanes would be
Option A:	V = u/2
Option B:	u = V/2
Option C:	V = 1/3 U
Option D:	u = 2.5 V

Q24.	A jet of water of diameter 50 mm, having a velocity of 20 m/s strikes a curved vane which is moving with a velocity of 10 m/s in the direction of the jet. The jet leaves the vane at an angle of 50° to the direction of motion of vane at outlet. The velocity of whirl at the out V_{w2} is
Option A:	4.57 m/s
Option B:	3.57 m/s
Option C:	3 m/s
Option D:	2.5 m/s
Q25.	The relative velocity is achieved by the equation
Option A:	u – V ₁
Option B:	V ₁ -u
Option C:	u*V ₁
Option D:	u/V ₁

Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: CEC503 and Course Name: Applied Hydraulics

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	D
Q3.	D
Q4	А
Q5	В
Q6	А
Q7	С
Q8.	С
Q9.	А
Q10.	А
Q11.	А
Q12.	С
Q13.	D
Q14.	А
Q15.	D
Q16.	А
Q17.	Α

Q18.	А
Q19.	D
Q20.	В
Q21.	А
Q22.	А
Q23.	В
Q24.	В
Q25.	В