Program: BE BIOMEDICAL Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: BMC504 and Course Name: BIOMEDICAL DIGITAL SIGNAL PROCESSING
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The even part of a signal $\mathrm{x}(\mathrm{t})$ is?
Option A:	$\mathrm{x}(\mathrm{t})+\mathrm{x}(-\mathrm{t})$
Option B:	$\mathrm{x}(\mathrm{t})-\mathrm{x}(-\mathrm{t})$
Option C:	$(1 / 2)^{*}(x(t)+x(-t))$
Option D:	$(1 / 2) *(x(t)-x(-t))$
Q2.	A unit ramp signal is
Option A:	energy signal
Option B:	Power signal
Option C:	neither energy nor power
Option D:	Both energy and power
Q3.	The discrete time function defined as $x(n)=1$ for $n \geq 0 ; u(n)=0$ for $n<0$ is an
Option A:	Unit sample signal
Option B:	Unit step signal
Option C:	Unit ramp signal
Option D:	Parabolic
Q4.	Find the DTFT of a discrete time signal $x(n)=a^{\|n\|} ;-1<n<1$
Option A:	$X\left(e^{j w}\right)=\frac{1-a^{2}}{1-2 a \cos \omega+a^{2}}$
Option B:	$X\left(e^{j w}\right)=\frac{1+a^{2}}{1-2 a \cos \omega+a^{2}}$
Option C:	$X\left(e^{j w}\right)=\frac{1-a}{1-2 a \cos \omega+a^{2}}$
Option D:	$X\left(e^{j w}\right)=\frac{1-a^{2}}{1+a^{2}}$
Q5.	Find the inverse Z transform of,

	$X(z)=\frac{1-z^{-1}+z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)}$ For ROC $1<\|z\|<2$
Option A:	$x(n)=\left(\frac{1}{2}\right)^{n} u(n)-2(2)^{n} u(-n-1)-2 u(n)$
Option B:	$x(n)=\left(\frac{1}{2}\right)^{n} u(n)-2(2)^{n} u(n)-2 u(n)$
Option C:	$x(n)=\left(\frac{1}{2}\right)^{n} u(-n-1)-2(2)^{n} u(n)-2 u(-n-1)$
Option D:	$x(n)=\left(\frac{1}{2}\right)^{n} u(-n-1)-2(2)^{n} u(-n-1) 2 u(-n-1)$
Q6.	What is the circular convolution of the sequences $x 1(n)=\{1,1,2,1\}$ and $\mathrm{x} 2(\mathrm{n})=\{1,2,3,4\}$?
Option A:	$\{13,14,11,13\}$
Option B:	$\{13,14,11,12\}$
Option C:	\{13,11,14,12\}
Option D:	\{13,12,11,6\}
Q7.	$x(\mathrm{n})=\{1,1,0,0\}$. The DFT of the signal is
Option A:	\{2,1+j, 0, -j $\}$
Option B:	\{2,1-j, 0, 1+j\}
Option C:	\{2,1+j, 0, 1-j\}
Option D:	\{-2,1-j, $0,1+j\}$
Q8.	IDFT of $X(\mathrm{k})=\{1,0,1,0\}$ is
Option A:	\{0.5,0,-0.5,0\}
Option B:	\{0,0.5, $0,0.5\}$
Option C:	\{0.5,0,0,0.5\}
Option D:	\{0.5,0,0.5,0\}
Q9.	Z transform of $\mathrm{u}(\mathrm{n}-\mathrm{k})$ signal is
Option A:	$\mathrm{U}(\mathrm{Z})$
Option B:	$Z^{-k} \mathrm{U}(\mathrm{Z})$
Option C:	$Z^{k} U(Z)$
Option D:	Z U(Z)
Q10.	Find Linear convolution of the sequence if $\mathrm{h}(\mathrm{n})=\{1,2,2,1\} ; \mathrm{x}(\mathrm{n})=\{1,-1,1,-1\}$
Option A:	\{1,1,1,0,-1,-1,-1\}
Option B:	$\{1,-1,1,1,-1,-1,0\}$
Option C:	\{1,0,1,0,1,0,1\}
Option D:	$\{1,0,0,5,4,-1,-2\}$
Q11.	In radix-2 FFT algorithm, the value of N is
Option A:	$2^{\text {m }}$
Option B:	2m

Option C:	$2^{(1 / m)}$
Option D:	2^{-m}
Q12.	The total number of complex additions required in radix-2 DIT-FFT algorithm is
Option A:	$N \log _{2} N$
Option B:	$\frac{N}{\log _{2} N}$
Option C:	$\frac{N}{2} \log _{2} N$
Option D:	$\frac{N}{2} \log _{2} \frac{N}{2}$
Q13.	In an N-point FFT algorithm, \qquad memory locations are required to store the coefficients
Option A:	a. N-3
Option B:	c. N/3
Option C:	b. N^{3}
Option D:	d. 3 N
Q14.	In an N-point sequence, if $\mathrm{N}=16$, the total number of complex additions and multiplications using Radix-2 FFT are,
Option A:	64 and 80
Option B:	64 and 32
Option C:	80 and 64
Option D:	24 and 12
Q15.	DIF-FFT is
Option A:	Decimation in frequency FFT
Option B:	Decimation in time FFT
Option C:	Decade in frequency FFT
Option D:	Digital in frequency FFT
Q16.	The main lobe width of length M hamming window is
Option A:	$\frac{4 \pi}{M}$
Option B:	$\frac{8 \pi}{4}$
	$\frac{M}{7 \pi}$
Option C:	$\frac{M}{M}$
Option D:	Variable
Q17.	The characteristics of ideal linear phase filter are,
Option A:	$\left\|H\left(e^{j \omega}\right)\right\|=\frac{1}{\omega}$ and $\angle H\left(e^{j \omega}\right)=$ constant
Option B:	$\left\|H\left(e^{j \omega}\right)\right\|=-\alpha \omega$ and $\angle H\left(e^{j \omega}\right)=$ constant
Option C:	$\left\|H\left(e^{j \omega}\right)\right\|=$ constant and $\angle H\left(e^{j \omega}\right)=-\alpha \omega$
Option D:	$\left\|H\left(e^{j \omega}\right)\right\|=$ constant and $\angle H\left(e^{j \omega}\right)=$ constant
Q18.	Determine the co-efficient of a linear phase FIR filter of length $\mathrm{N}=15$ which has a symmetric unit sample response and a frequency response that satisfies the

	condition
	$H\left(\frac{2 \pi k}{15}\right)=\left\{\begin{array}{c}1 ; \text { for } k=0,1,2,3 \\ 0.4 ; \text { for } k=4 \\ 0 ; \text { for } k=5,6,7\end{array}\right.$

Program: BE BIOMEDICAL Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: BMC504 and Course Name: BIOMEDICAL DIGITAL SIGNAL PROCESSING.

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	C
Q3.	B
Q4	A
Q5	A
Q6	B
Q7	B
Q8.	D
Q9.	B
Q10.	A
Q11.	A
Q12.	A
Q13.	D
Q14.	B
Q15.	A
Q16.	A
Q17.	D

Q18.	B
Q19.	A
Q20.	D
Q21.	A
Q22.	B
Q23.	C
Q24.	B
Q25.	C

