Program: BE Electrical Engineering
Curriculum Scheme: Revised 2012
Examination: Third Year Semester V
Course Code: EEC 503 and Course Name: Electromagnetic Fields and Waves
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Magnitude of unit vector along z direction is
Option A:	It has no magnitude
Option B:	Zero
Option C:	Constant but not zero
Option D:	1
Q2.	Determine the curl of $A=2 \mathrm{ax}$
Option A:	0
Option B:	1
Option C:	2
Option $\mathrm{D}:$	-2
Q3.	Find the potential of the function $\mathrm{V}=20 \sin \theta / \mathrm{r}$ at the point $\mathrm{P}(1,30,25)$.
Option A:	20
Option B:	10
Option $\mathrm{C}:$	30
Option $\mathrm{D}:$	60
Q4.	The coulomb's force between the 2 point charges $-10 \mu \mathrm{C}$ and $-5 \mu \mathrm{C} \mathrm{placed} \mathrm{at} \mathrm{a}$ distance of 0.00150 km is
Option A:	0.2 N
Option B:	0.5 N
Option C:	2 N
Option $\mathrm{D}:$	10 N
Q5.	Electric field intensity due to infinite sheet of charge σ is
Option A:	Zero
Option B:	Unity
Option C:	σ / ε
Option D:	$\sigma / 2 \varepsilon$
Q6.	Flux is a
Option A:	Unitless

Option B:	Scalar
Option C:	Vector
Option D:	Non zero
Q7.	A non magnetic source of magnetostatic fields
Option A:	d.c. current
Option B:	a rotating charged disc
Option C:	stationary charge
Option D:	changing electric field
Q8.	Magnetic element in electromagnetism is measured in
Option A:	Ampere-meter squared
Option B:	Coulomb
Option C:	Ampere
Option D:	Ampere-meter
Q9.	Static magnetic field is
Option A:	solenoidal
Option B:	conservative
Option C:	always open
Option D:	neither sinks nor sources
Q10.	The magnetic field dB due to a small current element dl at a distance r carrying a current I is
Option A:	$\mathrm{dB}=\frac{\mu o I}{4 \pi}\left(\frac{d l \times r}{r}\right)$
Option B:	$\mathrm{dB}=\frac{\mu o I^{2}}{4 \pi}\left(\frac{d l \times r}{r^{2}}\right)$
Option C:	$\mathrm{dB}=\frac{\mu o I^{2}}{4 \pi}\left(\frac{d l \times r}{r}\right)$
Option D:	$\mathrm{dB}=\frac{\mu o I}{4 \pi}\left(\frac{d l \times r}{r^{3}}\right)$
Q11.	Ampere law in differential form is
Option A:	$\vec{\nabla} \times J=H$
Option B:	$\vec{\nabla} \times H=J$
Option C:	$\vec{\nabla} \times H=0$
Option D:	$\vec{\nabla} \times J=0$
Q12.	Choose the Magnetic field intensity due to infinite long straight conductor

	expression
Option A:	$H=\frac{I r}{\pi \rho} \widehat{a_{\varphi}}$
Option B:	$H=\frac{I r}{2 \pi \rho} \widehat{a_{\varphi}}$
Option C:	$H=\frac{I}{2 \pi \rho} \widehat{a_{\varphi}}$
Option D:	$H=\frac{B}{4 \pi \rho} \widehat{a_{\varphi}}$
Q13.	Application of magnetic field is
Option A:	Mobile
Option B:	Camera
Option C:	Call Bell
Option D:	Television
Q14.	Any magnetic field at a point has ___ number of directions.
Option A:	1
Option B:	2
Option C:	Many
Option D:	0
Q15.	Energy density is __ form of energy.
Option A:	Point
Option B:	Integral
Option C:	Macroscopic
Option D:	Longitudinal
Q16.	A discharge capacitor has
Option A:	dielectric medium
Option B:	no medium
Option C:	no dimensions
Option D:	no size
Q17.	Kirchhoff's current law is the special case of ___ equation.
Option A:	Gauss's
Option B:	Ampere's
Option C:	Continuity
Option D:	Biot Savart's
Q18.	Inductance opposes instantaneous change in
Option A:	voltage
Option B:	current
Option C:	power
Option D:	energy

Q19.	There are __ number of boundary condition in electromagnetic fields.
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q20.	Boundary condition is based on phenomenon of light.
Option A:	Reflection
Option B:	Refraction
Option C:	Diffraction
Option D:	Dispersion
Q21.	Maxwell's second equation in integral form gives
Option A:	$\nabla . D=\rho v$
Option B:	$\int D d s=\int(\nabla . \mathrm{D}) \mathrm{dv}$
Option C:	$\int H d l=\int(\nabla \mathrm{XH}) \mathrm{ds}$
Option D:	$\nabla \mathrm{XH}=\mathrm{Jc}+\mathrm{Jd}$
Q22.	Conductivity of practical metals is
Option A:	0
Option B:	1
Option C:	Infinity
Option D:	High
Q23.	The expression for velocity of a wave in the conductor is
Option A:	$\mathrm{V}=\mathrm{V}(2 \omega / \mu \sigma)$
Option B:	$\mathrm{V}=\mathrm{V}(2 \omega \mu \sigma)$
Option C:	$\mathrm{V}=(2 \omega / \mu \sigma)$
Option D:	$\mathrm{V}=(2 \omega \mu \sigma)$
Q24.	Conductors satisfies ___ condition.
Option A:	$\sigma / \omega \varepsilon>1$
Option B:	$\sigma \omega \varepsilon>1$
Option C:	$\sigma / \omega \varepsilon<1$
Option D:	$\sigma \omega \varepsilon<1$
Q25.	Maxwell's fourth equation in differential form gives
Option A:	V. $B=0$
Option B:	$\int B . d s=0$
Option C:	$\int H . d l=\int(\nabla \mathrm{XH}) . \mathrm{ds}$
Option D:	$\nabla X E=-\partial B / \partial t$

Program: BE Electrical Engineering
Curriculum Scheme: Revised 2012
Examination: Third Year Semester V
Course Code: EEC 503 and Course Name: Electromagnetic Fields and Waves
Time: 1 hour
Max. Marks: 50

Question	Correct Option (Enter either 'A' or ' B ' or 'C' or ' D^{\prime} '
Q1.	D
Q2.	A
Q3.	B
Q4	A
Q5	D
Q6	D
Q7	C
Q8.	D
Q9.	B
Q10.	D
Q11.	B

