Examination 2020 under cluster 4 (PCE)

Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 2012 Examination: Third Year Semester V

Course Code: ETC 503 and Course Name: Random Signal Analysis

Time: 1 hour

Max. Marks: 50

=======

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The probability of certain event is		
Option A:			
Option B:	1		
Option C:	0.47		
Option D:	0.65		
Q2.	Which of the following is usually the most difficult cost to determine		
Option A:	service cost		
Option B:	facility cost		
Option C:	calling cost		
Option D:	waiting cost		
Q3.	The first order Markov chain is generally used when		
Option A:	stable transition probabilities		
Option B:	random change in transition probabilities		
Option C:	sufficient data		
Option D:	no sufficient data		
Q4.	Random process is also called as		
Option A:	Deterministic system		
Option B:	Linear system		
Option C:	Nondeterministic system		
Option D:	Stochastic process		
Q5.	If future values of sample function is cannot be predicted from its past values		
	such process is called as		
Option A:	Deterministic process		
Option B:	Nondeterministic process		
Option C:	Linear process		
Option D:	Nonlinear process		
Q6.	convergent means		
Option A:	tending to move toward one point or to approach each other		
Option B:	tending to move toward different point or move away from each other		
Option C:	it is not defined		
Option D:	addition		
Q7.	Strong law of large numbers is defined as		
Option A:	$P[\lim n \to \infty(X - \mu \ge \epsilon) = 0]$		
Option B:	$P[\lim n \to \infty(X-\mu \ge \epsilon) = 1]$		

Examination 2020 under cluster 4 (PCE)

Option C:	$P[\lim n \to \infty(X-\mu \ge \epsilon) = 2]$		
Option D:	$\frac{P[\lim n \to \infty(X-\mu > \epsilon) = 3]}{P[\lim n \to \infty(X-\mu > \epsilon) = 3]}$		
option D:			
Q8.	Chebychevs inequality is defined by		
Option A:	$\frac{P(x-\mu >= k \sigma) <= 1/(k^3)}{P(x-\mu >= k \sigma)} \le 1/(k^3).$		
Option B:	$\frac{P(x-\mu > -K \ 0) < - P(x-\mu > -K \ 0)}{P(x-\mu > -K \ 0) < - 1/(K^{-4})}.$		
Option C:	$\frac{P(x-\mu \ge -k \ \sigma) < -1/(k^{-}4)}{P(x-\mu \ge k \ \sigma) < = 1/(k^{-}2)}.$		
Option D:	$P(x-\mu >= k \sigma) <= 1/(k^{5}).$		
Option D.	$1(\Lambda^{-}\mu ^{2} + K 0) < 1/(K - 3).$		
Q9.	The value of CDF for any function should approcach		
Option A:	1		
Option B:	0		
Option D:	-1		
Option D:			
Option D.			
Q10.	A variable which can assume finite or countably infinite number of values is		
Q10.	known as:		
Option A:	Continuous		
Option A: Option B:	Discrete		
-			
Option C:	Qualitative None of the them		
Option D:			
Q11.	Maan of random process is given by		
Option A:	Mean of random process is given by		
	X(t)		
Option B:	X2(t)		
Option C:	$\frac{E[X(t)]}{V(t)}$		
Option D:	-X(t)		
Q12.	If $P(x) = 0.4$ and $x = 5$, then $F(x) = 2$		
· ·	If $P(x) = 0.4$ and $x = 5$, then $E(x) = ?$		
Option A:			
Option B:	0.5		
Option C:	4		
Option D:	2		
012	The machability of a continuous render veriable "V" toking any particular value		
Q13.	The probability of a continuous random variable "X" taking any particular value,		
Ontion A.	k is always:		
Option A:	Negative		
Option B:	Zero		
Option C:	One True		
Option D:	Two		
014	Opposionally, a state is entered which will not allow asing to enother state in the		
Q14.	Occasionally, a state is entered which will not allow going to another state in the		
Oration A	future. This is called		
Option A:	stable mobility		
Option B:	market saturation		
Option C:	a terminal state		
Option D:	an equilibrium state		

Examination 2020 under cluster 4 (PCE)

$\mathbf{P}_{\mathbf{A}}(\mathbf{A}) = \mathbf{A}(\mathbf{A})$			
$Rxx(\tau) = \tau^{4} + \tau^{4}$			
Is not a valid autocorrelation function			
Is a valid autocorrelation function			
Is cross correlation function			
Is not a covariance function			
The sampling distribution of the mean becomes approximately normally			
distributed only when which of the following conditions is met?			
The population is normally distributed.			
The sample size is large.			
A single random sample is drawn from the population.			
The standard deviation of the population is large.			
The conditional PMF of X given Y is			
PX Y(xi yj) = PY(yj)/PXY(xi,yj)			
PX Y(xi yj) = PXY(xi,yj)/PY(yj)			
PX Y(xi yj) = PXY(xi,yj)/PY(xi)			
PX Y(xi yj) = PXY(xi,yj)/PYX(yj,xi)			
Mean of a constant 'a' is			
0			
a			
a/2			
1			
Which of the following distributions is Continuous			
Binomial Distribution			
Poisson Distribution			
Geometric Distribution			
Exponential Distribution			
Which algorithm is used for solving temporal probabilistic reasoning			
Hidden markov model			
Hill-climbing search			
Depth-first search			
Depth-first search			
Depth-first search Breadth-first search			
Breadth-first search			
Breadth-first searchA random process is given by $X(t) = A\cos(\omega 0t + \theta)$ where $\theta = (0, \pi)$. Average power			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$ A^{2}			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$ A^{2} 0.5			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$ A^{2} 0.5			
Breadth-first search A random process is given by $X(t) = A\cos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$ A^{2} 0.5 0.6			
Breadth-first search A random process is given by $X(t) = Acos(\omega 0t+\theta)$ where $\theta = (0, \pi)$. Average power of random process is $A^{2}/2$ $A^{2}/2$ A^{2} 0.5 0.6 Which theorem states that the larger the sample size, the closer the sample mean			

Examination 2020 under cluster 4 (PCE)

Option C:	Convergence	
Option D:	Central limit theorem	
Q23.	In a joint distribution of x and y, the marginal PDF for X is given as	
Option A:	$f_X(X) = \int f(x,y) dy$	
Option B:	$f_X(X) = \int f(x,y) dx$	
Option C:	$\int fx(X) = \int f(y) dy$	
Option D:	$f_X(X) = \int f(x) dx$	
Q24.	The distribution function F(x) is equal to:	
Option A:	P(X = x)	
Option B:	$P(X \le x)$	
Option C:	$P(X \ge x)$	
Option D:	All of the above	
Q25.	A continuous random variable X has pdf defined by $f(x)=A+Bx$, $0 \le x \le 1$. If the	
	mean of the distribution is 1/3 .Find A and B.	
Option A:	A=1 B=3	
Option B:	A=4 B=9	
Option C:	A=8 B=5	
Option D:	A=2 B= -2	

Examination 2020 under cluster 4 (PCE)

Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 2012 Examination: Third Year Semester V Course Code: ETC 503 and Course Name: Random Signal Analysis

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	А
Q3.	А
Q4	D
Q5	В
Q6	С
Q7	А
Q8.	С
Q9.	А
Q10.	В
Q11.	С
Q12.	D
Q13.	В
Q14.	D
Q15.	А
Q16.	В
Q17.	В
Q18.	В
Q19.	D
Q20.	А
Q21.	А
Q22.	D
Q23.	А
Q24.	В
Q25.	D