University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 2012
Examination: Third Year Semester V
Course Code: ETC 503 and Course Name: Random Signal Analysis

Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The probability of certain event is
Option A:	0
Option B:	1
Option C:	0.47
Option D:	0.65
Q2.	Which of the following is usually the most difficult cost to determine
Option A:	service cost
Option B:	facility cost
Option C:	calling cost
Option D:	waiting cost
Q3.	The first order Markov chain is generally used when
Option A:	stable transition probabilities
Option B:	random change in transition probabilities
Option C:	sufficient data
Option D:	no sufficient data
Q4.	Random process is also called as
Option A:	Deterministic system
Option B:	Linear system
Option C:	Nondeterministic system
Option D:	Stochastic process
Q5.	If future values of sample function is cannot be predicted from its past values such process is called as
Option A:	Deterministic process
Option B:	Nondeterministic process
Option C:	Linear process
Option D:	Nonlinear process
Q6.	convergent means
Option A:	tending to move toward one point or to approach each other
Option B:	tending to move toward different point or move away from each other
Option C:	it is not defined
Option D:	addition
Q7.	Strong law of large numbers is defined as
Option A:	P[lim n $\rightarrow \infty(\|X-\mu\|>\epsilon)=0]$
Option B:	P[lim n $\rightarrow \infty(\|X-\mu\|>\epsilon)=1]$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	$\mathrm{P}[\lim \mathrm{n} \rightarrow \infty(\|\mathrm{X}-\mu\|>\epsilon)=2]$
Option D:	$\mathrm{P}[\lim \mathrm{n} \rightarrow \infty(\|\mathrm{X}-\mu\|>\epsilon)=3]$
Q8.	Chebychevs inequality is defined by
Option A:	$\mathrm{P}(\|\mathrm{x}-\mu\|>=\mathrm{k} \sigma)<=1 /\left(\mathrm{k}^{\wedge} 3\right)$.
Option B:	$\mathrm{P}(\|\mathrm{x}-\mu\|>=\mathrm{k} \sigma)<=1 /\left(\mathrm{k}^{\wedge} 4\right)$.
Option C:	$\mathrm{P}(\|\mathrm{x}-\mu\|>=\mathrm{k} \sigma)<=1 /\left(\mathrm{k}^{\wedge} 2\right)$.
Option D:	$\mathrm{P}(\|\mathrm{x}-\mu\|>=\mathrm{k} \sigma)<=1 /\left(\mathrm{k}^{\wedge} 5\right)$.
Q9.	The value of CDF for any function should approcach
Option A:	1
Option B:	0
Option C:	-1
Option D:	∞
Q10.	A variable which can assume finite or countably infinite number of values is known as:
Option A:	Continuous
Option B:	Discrete
Option C:	Qualitative
Option D:	None of the them
Q11.	Mean of random process is given by
Option A:	X(t)
Option B:	X2(t)
Option C:	E[X(t)]
Option D:	-X(t)
Q12.	If $\mathrm{P}(\mathrm{x})=0.4$ and $\mathrm{x}=5$, then $\mathrm{E}(\mathrm{x})=$?
Option A:	1
Option B:	0.5
Option C:	4
Option D:	2
Q13.	The probability of a continuous random variable " X " taking any particular value, k is always:
Option A:	Negative
Option B:	Zero
Option C:	One
Option D:	Two
Q14.	Occasionally, a state is entered which will not allow going to another state in the future. This is called
Option A:	stable mobility
Option B:	market saturation
Option C:	a terminal state
Option D:	an equilibrium state

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q15.	$\operatorname{Rxx}(\tau)=\tau^{\wedge}\{3\}+\tau^{\wedge}\{4\}$	
Option A:	Is not a valid autocorrelation function	
Option B:	Is a valid autocorrelation function	
Option C:	Is cross correlation function	
Option D:	Is not a covariance function	
Q16.	The sampling distribution of the mean becomes approximately normally distributed only when which of the following conditions is met?	
Option A:	The population is normally distributed.	
Option B:	The sample size is large.	
Option C:	A single random sample is drawn from the population.	
Option D:	The standard deviation of the population is large.	
Q17.	The conditional PMF of X given Y is	
Option A:	$\mathrm{PX} \mid \mathrm{Y}(\mathrm{xi} \mid \mathrm{yj})=\mathrm{PY}(\mathrm{yj}) / \mathrm{PXY}(\mathrm{xi}, \mathrm{yj})$	
Option B:	PX\|Y(xi	yj) $=$ PXY(xi,yj)/PY(yj)
Option C:	PX\|Y(xi	yj) $=$ PXY(xi,yj)/PY(xi)
Option D:	PX\|Y(xi	yj) $=$ PXY(xi, yj)/PYX(yj,xi)
Q18.	Mean of a constant ' a ' is	
Option A:	0	
Option B:	a	
Option C:	a/2	
Option D:	1	
Q19.	Which of the following distributions is Continuous	
Option A:	Binomial Distribution	
Option B:	Poisson Distribution	
Option C:	Geometric Distribution	
Option D:	Exponential Distribution	
Q20.	Which algorithm is used for solving temporal probabilistic reasoning	
Option A:	Hidden markov model	
Option B:	Hill-climbing search	
Option C:	Depth-first search	
Option D:	Breadth-first search	
Q21.	A random process is given by $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos (\omega 0 \mathrm{t}+\theta)$ where $\theta=(0, \pi)$. Average power of random process is	
Option A:	$\mathrm{A}^{\wedge}\{2\} / 2$	
Option B:	A^{\wedge} \{2\}	
Option C:	0.5	
Option D:	0.6	
Q22.	Which theorem states that the larger the sample size, the closer the sample mean will be to the mean of the population?	
Option A:	Law of large numbers	
Option B:	Chebychevs Inequality	

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	Convergence
Option D:	Central limit theorem
Q23.	In a joint distribution of x and y , the marginal PDF for X is given as
Option A:	$\mathrm{fx}(\mathrm{X})=\int \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dy}$
Option B:	$\mathrm{fx}(\mathrm{X})=\int \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dx}$
Option C:	$\mathrm{fx}(\mathrm{X})=\int \mathrm{f}(\mathrm{y}) \mathrm{dy}$
Option D:	$\mathrm{fx}(\mathrm{X})=\int \mathrm{f}(\mathrm{x}) \mathrm{dx}$
Q24.	The distribution function $\mathrm{F}(\mathrm{x})$ is equal to:
Option A:	$\mathrm{P}(\mathrm{X}=\mathrm{x})$
Option B:	$\mathrm{P}(\mathrm{X} \leq \mathrm{x})$
Option C:	$\mathrm{P}(\mathrm{X} \geq \mathrm{x})$
Option D:	All of the above
Q25.	A continuous random variable X has pdf defined by $\mathrm{f}(\mathrm{x})=\mathrm{A}+\mathrm{Bx}, 0 \leq \mathrm{x} \leq 1 . \mathrm{If}$ the mean of the distribution is $1 / 3$. Find A and B. Option A: $\mathrm{A}=1 \mathrm{~B}=3$ Option B: Aption $=9$ Option $\mathrm{D}:$ $\mathrm{A}=8 \mathrm{~B}=5$ $\mathrm{~A}=2 \mathrm{~B}=-2$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 2012
Examination: Third Year Semester V
Course Code: ETC 503 and Course Name: Random Signal Analysis
Time: 1 hour
Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	B
Q2.	A
Q3.	A
Q4	D
Q5	B
Q6	C
Q7	A
Q8.	C
Q9.	A
Q10.	B
Q11.	C
Q12.	D
Q13.	B
Q14.	D
Q15.	A
Q16.	B
Q17.	B
Q18.	B
Q19.	D
Q20.	A
Q21.	A
Q22.	D
Q23.	A
Q24.	B
Q25.	D

