Program: BE BIOMEDICAL Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: BMC504 and Course Name: BIOMEDICAL DIGITAL SIGNAL PROCESSING

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If a system do not have a bounded output for bounded input, then the system is said	
	to be	
Option A:	Causal	
Option B:	Non-causal	
Option C:	Stable	
Option D:	Non-stable	
Q2.	If the output of the system of the system at any 'n' depends only the futures	
	values of the inputs then the system is said to be	
Option A:	Non – linear	
Option B:	Causal	
Option C:	Non - Causal	
Option D:	Linear	
Q3.	If all the poles of H(z) are inside the unit circle, then the system is said to be	
Option A:	Only causal	
Option B:	Only BIBO stable	
Option C:	BIBO stable and causal	
Option D:	BIBO stable and anti –causal	
Q4.	If one or more poles are located near the unit circle, then the rate of decay of signal	
	is	
Option A:	Slow	
Option B:	Constant	
Option C:	Rapid	
Option D:	Fast	
Q5.	The even part of a signal x(t) is?	
Option A:	x(t)+x(-t)(t)+x(-t)	
Option B:	x(t)-x(-t)	
Option C:	$(1/2)^*(x(t)+x(-t))$	
Option D:	$(1/2)^*(x(t)-x(-t))$	

Option A:	LHS of the s-plane is mapped inside the circle, z =1	
Q13.	If $s=\sigma + j \Omega$ and $z=re^{j\omega}$ and $r=1$, then which of the following inference is correct?	
Option D:	X(7)=5j	
Option C:	X(7)=4-j	
Option B:	Dc value is 27	
Option A:	X(7)=5j	
	5j.which of following statement is true?	
Q12.	The first four output of 8 point radix 2 FFT are X(0)=27,X(1)=4+3j,X(2)=4+j,X(3)=-	
Option D:	FFT	
Option C:	DTFT	
Option B:	z-transform	
Option A:	DFT	
Q11.	Bit reversal format is used in	
Option D:	X(k)={5,8,7,6}	
Option C:	X(k)={5,7,6,8}	
Option B:	X(k)={5,6,7,8}	
Option A:	X(k)={5, 4,3,8}	
Q10.	Compute the IDFT of X(k)={26, -2+2j, -2, -2-2j}	
Option D:	discrete and Periodic	
Option C:	Continuous and Periodic	
Option B:	Discrete and non-periodic	
Option A:	Continuous and non-periodic	
Q9.	The Fourier transform of a discrete-time periodic signal is	
Option D:	$\{1, -1, -5, 2, 3, -5, 1, 4\}$	
Option C:	{1, 1, 5, 2, 3, , 1, 4}	
Option B:	$\{1, -1, -5, 21, 3, -5, 1, 4\}$	
Option A:	{1, -1 1, -5, 2, 3, -5, 1, 4}	
Q8.	Perform linear convolution of x(n) = {1,1,0,1, 1} h (n) = {1, -2, -3,4 }	
Option D:	{1,1,0,0}	
Option C:	{4,4,4,4}	
Option B:	(4,0,0,1)	
Option A:	{4,0,0,0}	
Q7.	x(n)={1,1,1,1}.The DFT of this signal is	
•		
Option D:	{14,16,14,16}	
Option C:	{2,3,6,4}	
Option B:	{16,16,14,14}	
Option A:	{14,14,16,16}	
Q6.	What is the circular convolution of the sequences X1(n)={2,1,2,1} and x2(n)={1,2,3,4}?	

Option B:	RHS of the s-plane is mapped outside the circle, z =1	
Option C:	Imaginary axis in the s-plane is mapped to the circle, $ z =1$	
Option D:	RHS of the s-plane is mapped inside the circle, z =1	
Q14.	Which of the following rule is used in the bilinear transformation?	
Option A:	Simpson's rule	
Option B:	Backward difference	
Option C:	Forward difference	
Option D:	Trapezoidal rule	
Q15.	The anti-symmetric condition with M even is not used in the design of which of the following linear-phase FIR filter?	
Option A:	Low pass	
Option A:		
Option C:	High pass	
•	Band pass	
Option D:	Band stop	
Q16.	FIR filter is always stable because all of its pole(s) are	
Option A:	Origin	
Option B:	at the infinity	
Option C:	at the ROC	
Option D:	on the real axis	
Q17.	Out of all the windows available, the one which has the narrowest main lobe for a	
	given length is	
Option A:	Rectangular	
Option B:	Blackman	
Option C:	Hanning	
Option D:	Hamming	
Q18.	Co-efficient symmetry is important in FIR filters because it provides	
Option A:	A smaller transition bandwidth	
Option B:	less stop band ripple	
Option C:	less pass-band ripple	
Option D:	linear phase response	
Q19.	The width of the main-lobe should be and it should contain as	
Q19.	much of the total energy as possible	
Option A:	Very Large	
Option B:	Large	
Option C:	Medium	
Option C:	Small	
option D.	Sindi	
Q20.	In the impulse invariant design procedure, the relationship between continuous-time	
Q20.	In the impulse invariant design procedure, the relationship between continuous-time and discrete-time frequency is	

Option B:	Parabolic		
Option C:	Linear		
Option D:	Exponential		
Q21.	What is the minimum number of multipliers, adders and delay elements required to		
	implement a linear phase filter with h(n)=0 for n<0 and n>15		
Option A:	15 multipliers, 15 adders, and 15 delay elements		
Option B:	8 multipliers, 8 adders and 15 delay elements		
Option C:	8 multipliers, 8 adders and 15 delay elements		
Option D:	15 multipliers, 8 adders and 15 delay elements		
Q22.	The mapping in the impulse invariant method is		
Option A:	Many to many		
Option B:	One to Many		
Option C:	Many to one		
Option D:	One to one		
Q23.	What is the frequency response of system with input h (n) and window of length M?		
Option A:	M-1		
	$\sum h(n) e^{j\omega n}$		
	$\sum_{\substack{n=0\\M}} h(n) \ e^{j\omega n}$		
Option B:	$\sum_{i=1}^{M} h(x) = i\omega n$		
	$\sum n(n) e^{j \omega n}$		
Option C:	<u>n=0</u>		
option e.	$\sum h(n) e^{j\omega n}$		
	$\sum_{n=0}^{\infty}$		
Option D:	$\sum_{\substack{n=0\\M}}^{M} h(n) e^{j\omega n}$ $\sum_{\substack{n=0\\M-1\\\sum_{n=0}}^{M-1}}^{M} h(n) e^{j\omega n}$		
	$\sum h(n)e^{-j\omega n}$		
Q24.	What is lowest order of butter-worth filter with pass band gain k_p =-1 decibel at		
	$\Omega p=4$ rad/sec and stop band attenuation greater than or equal to 20 decibel at $\Omega s=8$		
<u> </u>	rad/sec?		
Option A:	4		
Option B:	5		
Option C:	6		
Option D:	3		
025			
Q25.	The pipelining refers to		
Option A:	Prefetching instructions and storing in a FIFO queue		
Option B:	Fetching instruction and data simultaneously		
Option C:	Executing different phases of two or more instruction in parallel		
Option D:	Executing different instruction in parallel using two or more computational units		

Program: BE BIOMEDICAL Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: BMC504 and Course Name: BIOMEDICAL DIGITAL SIGNAL PROCESSING.

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	С
Q3.	С
Q4	A
Q5	С
Q6	D
Q7	А
Q8.	D
Q9.	D
Q10.	В
Q11.	D
Q12.	В
Q13.	С
Q14.	D
Q15.	А

Q16.	А
Q17.	А
Q18.	А
Q19.	В
Q20.	С
Q21.	С
Q22.	С
Q23.	D
Q24.	В
Q25.	С