University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: CHC 503

Course Name: Heat Transfer Operations-I (HTO-I)

Time: 1 hour

Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	In a case of one dimensional heat conduction in a medium with constant properties, T is the temperature at position x , at time t . Then is proportional to:
Option A:	$\frac{T}{X}$
Option B:	$\frac{\partial T}{\partial x}$
Option C:	$\frac{\partial^2 T}{\partial x \partial t}$
Option D:	$\frac{\partial^2 T}{\partial^2 x}$
Q2.	Consider steady-state heat conduction across the thickness in a plane composite wall (as shown in the figure) exposed to convection conditions on both sides.

	$h_{i}, T_{\infty,i} $ $h_{0}, T_{\infty,0}$ h_{0}, L_{1}				
	Given: $h_i = 20 \text{ W/m}^2\text{K}$; $h_o = 50 \text{ W/m}^2\text{K}$; $T_{\infty,i} = 20^\circ C$; $T_{\infty,o} = -2^\circ C$; $k_1 = 20$				
	W/mK; $K_2 = 50$ W/mK; $L_1 = 0.30$ m and $L_2 = 0.15$ m. Assuming negligible				
	contact resistance between the wall surfaces, the interface temperature, T (in				
	°C), of the two walls will be				
Option A:	-0.50				
Option B:	2.75				
Option C:	3.75				
Option D:	4.50				
Q3.	It is proposed to coat a 1 mm diameter wire with enamel paint ($k = 0.1$ W/mK) to increase heat transfer with air. If the air side heat transfer coefficient is 100 W/m ² K, then optimum thickness of enamel paint should be:				
Option A:	0.25 mm				
Option B:	0.5 mm				
Option C:	1 mm				
Option D:	2 mm				
Q4.	Thermal diffusivity of a substance is:				
Option A:	Inversely proportional to thermal conductivity				
Option B:	Directly proportional to thermal conductivity				
Option C:	Directly proportional to the square of thermal conductivity				
Option D:	Inversely proportional to the square of thermal conductivity				
Q5.	Heat transfer in liquid and gases takes place by				
Option A:	Conduction				
Option B:	Convection				
Option C:	Radiation				
Option D:	Conduction and convection				

Q6.	which quantity signifies the ratio of temperature gradient at the surface to a			
	reference temperature gradient?			
Option A:	Reynolds number			
Option B:	Nusselt number			
Option C:	Fourier number			
Option D:	Stanton number			
Q7.	For a given value of Nusselt number, the convective surface coefficient h is			
	directly proportional to			
Option A:	Length			
Option B:	Mass			
Option C:	Thermal conductivity			
Option D:	Density			
Q8.	What is Nusselt number?			
Option A:	C _P . μ/k			
Option B:	h. D/k			
Option C:	h. C _P /µ			
Option D:	C _P . µ/h			
Q9.	The ratio of heat flow rate by convection to flow rate by conduction is known a			
Option A:	Stanton number			
Option B:	Graetz number			
Option C:	Fourier number			
Option D:	Peclet number			
Q10.	Boiling is aoperation.			
Option A:	Convection			
Option B:	Conduction			
Option C:	Radiation.			
Option D:	Drying			
Q11.	When heat is added to a liquid from a submerged solid surface, its called			
Option A:	Nucleate boiling			
Option B:	Film boiling			
Option C:	Pool boiling			
Option D:	Transition Boiling.			
-				
Q12.	Commercial boilers are designed to operate at a temperature drop.			
Option A:	Less than Critical Temperature drop.			
Option B:	More than critical temperature drop.			
Option C:	At critical temperature drop.			
Option D:	Infinite critical temperature drop.			

Q13.	In which type of boiling the fluid motion is induced by external means?			
Option A:	Forced convection			
Option B:	Pool			
Option C:	Local			
Option D:	Sub-cooled			
Q14.	What is the use of fins in heat exchange equipment?			
Option A:	To increase the heat transfer rate			
Option B:	To decrease the heat transfer rate			
Option C:	To keep constant heat transfer rate			
Option D:	To decrease heat transfer area			
· ·				
Q15.	Which of the following has the lowest overall heat transfer coefficient?			
Otion A:	Air			
Option B:	Molten sodium			
Option C:	Water			
Option D:	Dowtherm			
-				
016.	Double pipe heat exchangers are used			
Option A:	When heat transfer area required is very high.			
Option B:	When heat transfer area required is very low.			
Option C:	Because it occupies less floor area.			
Option D:	Because it is less costly.			
1				
017.	Tube side temperature in a shell and tube heat exchanger is normally measured			
	by a constant volume			
Option A:	hydrogen thermometer			
Option B:	mercury in glass thermometer			
Option C:	thermocouple			
Option D:	radiation pyrometer			
1				
018.	In shell and tube heat exchanger, the shortest centre to centre distance between			
	the adjacent tubes is			
Option A:	called tube pitch			
Option B:	called tube clearance			
Option C:	is always less than diameter of tube			
Option D:	haffle spacing			
019.	The value of transmissivity may vary from			
Option A:	0-1			
Option B:	1-2			
Option C:	3-4			
Option D:	4-5			
option D.				
1				

Q20.	Of the radiant energy 350 W/m ² incident upon a surface 250 W/m ² is absorbed,			
	60W/m ² is reflected and the remainder is transmitted through the surface.			
	Workout the value for absorptivity for the surface material			
Option A:	0-1			
Option B:	1-2			
Option C:	3-4			
Option D:	4-5			
Q21.	Transmissivity is defined as			
Option A:	Fraction of total energy transmitted by the body			
Option B:	Fraction of total energy reflected by the body			
Option C:	Fraction of total energy absorbed by the body			
Option D:	Fraction of total energy absorbed and radiated by the body			
Q22.	With an increase in wavelength, the monochromatic emissive power of a black			
	body			
Option A:	Increase			
Option B:	Decreases			
Option C:	Decreases, reaches a minimum and then increases			
Option D:	Increases, reaches a maximum and then decreases			
Q23.	A body through which all the incident radiations passes, is called			
Option A:	Opaque body White body			
Option B:	Black body			
Option C:	Transparent body			
Option D:	White body			
Q24.	Reflectivity is defined as			
Option A:	Fraction of total energy transmitted by the body			
Option B:	Fraction of energy reflected by the body			
Option C:	Fraction of total energy absorbed by the body			
Option D:	Fraction of total energy absorbed and radiated by the body			
Q25.	Let 220 W/m^2 of radiant energy is absorbed by a convex surface, 90 W/m^2 is			
	reflected and 40 W/m^2 is transmitted through it. What is the value of			
	absorptivity?			
Option A:	0.72			
Option B:	0.62			
Option C:	0.52			
Option D:	0.42			

University of Mumbai

Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: CHC 503

Course Name: Heat Transfer Operations-I

Time: 1 hour

Max. Marks: 50

	Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D'
Q1.		D
Q2.		С
Q3.		В
Q4		В
Q5		В
Q6		В
Q7		С
Q8.		В

Q9.	D
Q10.	A
Q11.	С
Q12.	A
Q13.	A
Q14.	A
Q15.	A
Q16.	В
Q17.	С
Q18.	A
Q19.	A
Q20.	С
Q21.	A
Q22.	D
Q23.	С
Q24.	В
Q25.	В
