Program: BE Chemical Engineering	
Curriculum Scheme: Revised 2012	
Examination: Third Year Semester V	
Course Code : CHC 504	
Course Name: Chemical Reaction Engineering -I	
Time: 1 hour	Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Option D:	Number of moles of inert remains constant
Q3.	The space time is equivalent to the holding time in a steady state mixed reactor for
Option A:	Non-isothermal gas reaction
Option B:	Variable fluid density systems
Option C:	Constant fluid density systems
Option D:	Gas reactions with changing number of moles
Q4.	For the same residence time, which one will give the maximum conversion?
Option A:	Single stirred tank ($v = 5$ litres)
Option B:	Two stirred tank (each of 2.5 litres) in series
Option C:	Stirred tank followed by tubular flow reactor (each of 2.5 litres)
Option D:	Single tubular flow reactor ($v = 5$ litres)
Q5.	An elementary liquid phase decomposition reaction $A \rightarrow 2B$ is to be carried out in a CSTR. The design equation is
Option A:	$k\tau = \frac{x_A}{1 - x_A}$
Option B:	$k\tau = \frac{x_A \left(1 + x_A\right)}{1 - r_A}$
Option C:	$k\tau = \frac{x_A}{(1 - x_A)^2}$
Option D:	
	$k\tau = \frac{\frac{x_A}{(1+x_A)}}{(1-x_A)^2}$
06	The rate of a chamical reaction talls us about
Qu.	the reactants taking part in the reaction
Option R.	the products formed in the reaction
Option C	how slow or fast the reaction is taking place
Option D:	none of the above
Q7.	The conversion for a first order liquid phase reaction in a CSTR is 50%. If another CSTR of the same volume is connected in series, then the percentage conversion at the exit of the second reactor will be
Option A:	60

Option B:	90
Option C:	75
Option D:	100
Q8.	Which of the following statements in incorrect?
Option A:	A rise in temperature usually tends to reduce the reaction Rate
Option B:	A rise in temperature usually increases reaction rates
Option C:	A rise in temperature does not affect photo-chemical reaction rates
Option D:	A rise in temperature has no effect on catalysed reaction
Q9.	The experimentally determined overall order for the reaction A + B \rightarrow C + D is two. Then the
Option A:	reaction is elementary with a molecularity of 2
Option B:	molecularity of the reaction is 2 but the reaction may not be elementary
Option C:	reaction is elementary but the molecularity may not be 2
Option D:	Can't say
Q10.	From Arrhenius law a plot of In K versus 1/T give a straight line with a slope of
	(-E/R). The units of E/R are
Option A:	К
Option B:	cal
Option C:	cal/K
Option D:	K/cal
Q11.	In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become
Option A:	64 times
Option B:	128 times
Option C:	256 times
Option D:	512 times
Q12.	For a order reaction, the units of rate constant and rate of reaction are the same.
Option A:	zero
Option B:	one
Option C:	two
Option D:	three
1	

Q13.	Arrhenius equation shows the variation of with temperature.	
Option A:	Reaction rate	
Option B:	Rate constant	
Option C:	Energy of activation	
Option D:	Frequency factor	
Q14.	The reaction in which the rate equation corresponds to a stoichiometric	
	equation is called	
	a/an reaction.	
Option A:	Autokinetic	
Option B:	Parallel	
Option C:	Elementary	
Option D:	Non-elementary	
Q15.	The rate constant of a first order reaction depends on the	
Option A:	Concentration of the reactant.	
Option B:	Concentration of the product.	
Option C:	Temperature.	
Option D:	Time	
Q16.	Half life for a second order reaction is inversely proportional to the	
	power of initial concentration.	
Option A:	Zero	
Option B:	First	
Option C:	Second	
Option D:	Third	
0.17		
Q17.	A reaction is zero order when the rate of reaction is independent of the	
Ontion A:	Of the reactant.	
Option R:	Temperature	
Option C:	Time	
Option D:	None of above	
Option D.		
018.	is useful for testing more complicated rate expression.	
Option A:	Differential method	
Option B:	Integral Method	
Option C:	Half life Method	
Option D:	None of the above	
· ·		
019	A first order irreversible reaction $A \rightarrow B$ is carried out separately in a constant	
Q13.	volume as well as in a variable volume reactor for a particular period. It signifies	

	that in the two reactors.
Option A:	both conversion as well as concentration are same
Option B:	conversion in both will be the same but concentrations will be different
Option C:	both the conversion as well as concentrations will be different
Option D:	Only conversion is same
Q20.	Half life period of decomposition of a liquid 'A' by irreversible first order reaction is 12 minutes. The time required for 75% conversion of 'A' is minutes.
Option A:	18
Option B:	24
Option C:	6
Option D:	12
021	For certain reaction, the rate of reaction at concentration 0.12 mol/lit is
Q21.	2.16×10^{-3} mg/(lit min), while the rate of reaction at concentration 0.04 mgl/lit
	2.10 x 10 mo/(int.inii), while the rate of feaction at concentration 0.04 mol/int is 0.24×10^{-3} mo/(it min) what will be the order of reaction
	18 0.24 x 10 mo/(lit.min), what will be the order of reaction
Option A:	0
Option B:	1
Option C:	2
Option D:	3
Q22.	The first order gas phase reaction $A \xrightarrow{\kappa_1} 2B$ is conducted isothermally in batch mode. The rate of change of conversion with time is given by
Option A:	$\frac{dX_A}{dt} = k_1 (1 - X_A)^2 (1 + 2X_A)$
Option B:	$\frac{dX_A}{dt} = k_1(1 - X_A) (1 + 0.5X_A)$
Option C:	$\frac{dX_A}{dt} = k_1(1 - X_A)$
Option D:	$\frac{dX_A}{dt} = \frac{k_1(1 - X_A)}{(1 + X_A)}$
023	Reaction rate of a first order reaction, which is half completed in 23 minutes
	will be

Option A:	0.03 sec^{-1}
Option B:	0.03 min ⁻¹
Option C:	0.03 hr ⁻¹
Option D:	0.05 min^{-1}
Q24.	For a reaction $2A + B \xrightarrow{k} C$, the rate equation is given as $-r_4 = kC_4^2$. C_B , the
	order of reaction will be
Option A:	zero
Option B:	one
Option C:	two
Option D:	three
Q25.	At equilibrium
Option A:	the rate of forward reaction is equal to the rate of backward reaction
Option B:	the rate of forward reaction is less than the rate of backward reaction
Option C:	the rate of forward reaction is more than the rate of backward reaction
Option D:	rate of forward reaction and the rate of backward reaction are independent of
	each other

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code : CHC 504

Course Name: Chemical Reaction Engineering -I

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D'
Q1.	А
Q2.	В
Q3.	С
Q4	D
Q5	А
Q6	С
Q7	С
Q8.	А
Q9.	В
Q10.	А
Q11.	D
Q12.	А
Q13.	В
Q14.	С
Q15.	С
Q16.	В

Q17.	А
Q18.	А
Q19.	В
Q20.	В
Q21.	С
Q22.	С
Q23.	В
Q24.	D
Q25.	А