Program: BE CIVIL Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: CEC602 and Course Name: Design and Drawing of Steel Structures

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	For the steel of grade Fe 410, 410N/mm ² is –		
Option A:	Yield Stress		
Option B:	Design stress		
Option C:	Ultimate tensile stress		
Option D:	Failure stress		
option D.			
Q2.	A tie member ISA 100 x 75 x 8 with $A_g = 16.50 \text{ cm}^2$ connected with longer leg		
	using 5-M16 black bolts. Approximate rupture strength of member will be		
	nearly-		
Option A:	313 KN		
Option B:	320 KN		
Option C:	305 KN		
Option D:	330 KN		
-			
Q3.	Which of the following type of tension member is not mainly used in modern		
	practice		
Option A:	open section such as angles		
Option B:	Flat bars		
Option C:	Double angles		
Option D:	Circular section		
Q4.	What is the effective length when both the end of compression member are		
	Hinged?		
Option A:	0.65 L		
Option B:	0.80 L		
Option C:	1.00 L		
Option D:	2.00 L		
Q5.	The value of imperfection factor for a compression member for buckling class		
	"d" member is-		
Option A:	0.34		
Option B:	0.45		
Option C:	0.21		
Option D:	0.76		

to too isOption A:S+2gOption D:S-2gOption D:SQ7.In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will beOption A: $60-90$ degreesOption B:91-100 degreesOption C:101-106 degreesOption D:107-113 degreesQ8.Under exactly identical conditions, battened column as compared to laced column isOption A:Equal in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption B:250 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end batten Option D:Q11.Lacing shall be designed to resist transverse shear (Vt) equals to Option D:Q12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be, Option D:Q12.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	Q6.	Width of end batten in built-up column, when two channel sections are placed		
Option B: S-2g Option C: SHC _{yy} Option D: S Q7. In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will be Option A: 60-90 degrees Option B: 91-100 degrees Option D: 107-113 degrees Option D: 107-113 degrees Option A: Equal in strength Option A: Equal in strength Option D: Stronger in strength Option B: Stronger in strength Option B: 250 N/mm ² Option C: 240 N/mm ² Option C: 3/2 Option C: 3/2 <th< td=""><td></td><td></td></th<>				
Option B: S-2g Option C: SHC _{yy} Option D: S Q7. In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will be Option A: 60-90 degrees Option B: 91-100 degrees Option D: 107-113 degrees Option D: 107-113 degrees Option A: Equal in strength Option A: Equal in strength Option D: Stronger in strength Option B: Stronger in strength Option B: 250 N/mm ² Option C: 240 N/mm ² Option C: 3/2 Option C: 3/2 <th< td=""><td>Option A:</td><td colspan="2">S+2g</td></th<>	Option A:	S+2g		
Option C: $S + C_{vv}$ Option D: S Q7. In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will be Option A: 60-90 degrees Option D: 101-106 degrees Option D: 107-113 degrees Option A: Equal in strength Option B: Weaker in strength Option C: Stronger Option C: Stronger Option C: Stronger Option A: Equal in strength Option C: Stronger Option A: 166 N/mm ² Option B: 250 N/mm ² Option B: 220 N/mm ² Option B: 221 N/mm ² Option B: 4/3 Option A: 1/2 Option C: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option B: 2.5 % of column load Option C: 5.0 % of column load Option C: 5.0 % of column load Option A: 0.5 % of column load Option B: 2.5 % of column load				
Option D: S Q7. In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will be Option A: 60-90 degrees Option B: 91-100 degrees Option D: 101-106 degrees Option D: 107-113 degrees Q8. Under exactly identical conditions, battened column as compared to laced column is Option A: Equal in strength Option B: Weaker in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress fed for Fe410 grade steel is Option B: 250 N/mm ² Option D: 227 N/mm ² Option D: 227 N/mm ² Option A: 1/2 Option A: 1/2 Option A: 1/2 Option C: 3/2 Option C: 3/2 Option B: 2.5 % of column load Option B: 5.0 % of column load Option A: 0.5 % of column load				
Q7. In case of Fillet Weld to calculate Size of weld, if the value of "k is 0.55" then the Angle of Fusion will be Option A: 60-90 degrees Option B: 91-100 degrees Option D: 101-106 degrees Option D: 101-113 degrees Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f _{cd} for Fe410 grade steel is Option C: 240 N/mm ² Option D: 227 N/mm ² Q10. Depth of intermediate batten = of depth of end batten Option B: 4/3 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option B: 2.5 % of column load Option D: 5.0 % of column load Option D: 2.5 % of column load Option D: 2.5 % of column load Option D: 8.0 % of column load Option D: 5.0 % of column load Option D: 5.0 % of column load Option D: 8.0 % of column load				
the Angle of Fusion will beOption A:60-90 degreesOption B:91-100 degreesOption D:101-106 degreesOption D:107-113 degreesQ8.Under exactly identical conditions ,battened column as compared to laced column isOption A:Equal in strengthOption B:Weaker in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option B:220 N/mm²Option D:220 N/mm²Option D:227 N/mm²Option B:4/3Option C:3/2Option C:3/2Option C:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals to Option C:Option C:5.0 % of column loadOption C:5.0 % of column loadOption D:2.5 % of column loadOption D:8.0 % of column loadOption D:2.20 ε_w Q12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d_1w should be, Option A:Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250				
Option A: $60-90$ degrees Option B: 91-100 degrees Option C: 101-106 degrees Option D: 107-113 degrees Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option D: 50% stronger in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option B: 230 N/mm ² Option D: 240 N/mm ² Option D: 240 N/mm ² Option B: 4/3 Option D: 3/4 Q10. Depth of intermediate batten = of depth of end batten Option D: 3/2 Option D: 3/2 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option A: 0.5 % of column load Option C: 5.0 % of column load Option D: 8.0 %	Q7.			
Option B: 91-100 degrees Option C: 107-113 degrees Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option A: 166 N/mm ² Option B: 220 N/mm ² Option C: 240 N/mm ² Option D: 50% stronger Q10. Depth of intermediate batten = of depth of end batten Option B: 227 N/mm ² Q10. Depth of intermediate batten = of depth of end batten Option B: 3/2 Option D: 3/2 Option D: 3/2 Option B: 2.5 % of column load Option D: 8.0 % of column load Option D:	Option A:			
Option C: 101-106 degrees Option D: 107-113 degrees Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option D: Stronger in strength Option D: Stronger in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option A: 166 N/mm ² Option B: 250 N/mm ² Option C: 240 N/mm ² Option D: 227 N/mm ² Option C: 240 N/mm ² Option D: 227 N/mm ² Option D: 23/2 Option A: 1/2 Option A: 1/2 Option B: 4/3 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option B: 2.5 % of column load Option D: 3/4 Q12. In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, dt_w should be, Option B: $\leq 230 \ \varepsilon_w$				
Option D: 107-113 degrees Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option B: Weaker in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option B: 250 N/mm ² Option D: 240 N/mm ² Option D: 227 N/mm ² Option D: 227 N/mm ² Option C: 240 N/mm ² Option D: 227 N/mm ² Option D: 227 N/mm ² Option C: 3/4 Q10. Depth of intermediate batten = of depth of end batten Option A: 1/2 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option D: 3/4 Q12. In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be, Option D: $\leq 240 \ \varepsilon_w$ Option C: $\leq 230 \ \varepsilon_w$ Option D: $\leq 240 \ \varepsilon_w$ Option D:	<u> </u>			
Q8. Under exactly identical conditions ,battened column as compared to laced column is Option A: Equal in strength Option B: Weaker in strength Option D: 50% stronger Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option A: 166 N/mm ² Option D: 250 N/mm ² Option D: 227 N/mm ² Option A: 1/2 Option A: 1/2 Option A: 1/2 Option A: 1/2 Option B: 4/3 Option C: 3/2 Option D: 3/4 Q10. Depth of intermediate batten = of depth of end batten Option C: 3/2 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option B: 2.5 % of column load Option C: 5.0 % of column load Option D: 8.0 % of column load Option D: 8.0 % of column load Option A: 0.2 \$30 \$c_w Option A: $\leq 230 c_w Option B:				
column isOption A:Equal in strengthOption B:Weaker in strengthOption C:Stronger in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option D:220 N/mm²Option D:227 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end battenOption A:1/2Option B:4/3Option C:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption B:2.5 % of column loadOption C:5.0 % of column loadOption D:8.0 % of column loadOption D:5.0 % of column loadOption D:5.0 % $for late Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option D:\leq 230 \ \varepsilon_wOption D:\leq 240 \ \varepsilon_wOption D:\leq 240 \ \varepsilon_wOption D:\leq 240 \ \varepsilon_wOption D:\leq 240 \ \varepsilon_wOption D:$	Option D:	10/-113 degrees		
Option B:Weaker in strengthOption C:Stronger in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option B:250 N/mm²Option D:240 N/mm²Option D:227 N/mm²Option D:227 N/mm²Option A:1/2Option A:1/2Option C:3/2Option D:3/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A:0.5 % of column loadOption D:2.5 % of column loadOption D:8.0 % of column loadOption D:5.0 % of column loadOption D:8.0 % of column loadOption D:8.0 % of column loadOption D:2.20 ε_w Option D: $\leq 230 \varepsilon_w$ Option D: $\leq 240 \varepsilon_w$ Option D:<	Q8.			
Option B:Weaker in strengthOption C:Stronger in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option B:250 N/mm²Option D:240 N/mm²Option D:227 N/mm²Option D:227 N/mm²Option A:1/2Option A:1/2Option C:3/2Option D:3/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A:0.5 % of column loadOption D:2.5 % of column loadOption D:8.0 % of column loadOption D:5.0 % of column loadOption D:8.0 % of column loadOption D:8.0 % of column loadOption D:2.20 ε_w Option D: $\leq 230 \varepsilon_w$ Option D: $\leq 240 \varepsilon_w$ Option D:<	Option A:	Equal in strength		
Option C:Stronger in strengthOption D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option B:250 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end battenOption A:1/2Option B:4/3Option C:3/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption B:2.5 % of column loadOption D:5.0 % of column loadOption D:8.0 % of column loadOption D:2.50 ε_w Option B: $\leq 230 \varepsilon_w$ Option B: $\leq 240 \varepsilon_w$ Option B: $\leq 240 \varepsilon_w$ Option D: $\leq 210 \varepsilon_w$ Option D: $\leq 210 \varepsilon_w$ Option D: $\leq 210 \varepsilon_w$ <td>Option B:</td> <td></td>	Option B:			
Option D:50% strongerQ9.For very short compression member the design compressive stress f_{cd} for Fe410 grade steel isOption A:166 N/mm²Option B:250 N/mm²Option D:240 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end battenOption A:1/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption B:2.5 % of column loadOption C:5.0 % of column loadOption D:8.0 % of column loadOption D:\$.200 ε_w Option D: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Option D:	Option C:			
Q9. For very short compression member the design compressive stress f_{cd} for Fe410 grade steel is Option A: 166 N/mm ² Option D: 250 N/mm ² Option D: 227 N/mm ² Q10. Depth of intermediate batten = of depth of end batten Option A: 1/2 Option C: 3/2 Option D: 3/2 Option D: 3/4 Q11. Lacing shall be designed to resist transverse shear (Vt) equals to Option A: 0.5 % of column load Option D: 2.5 % of column load Option D: 8.0 % of column load Option D: 8.0 % of column load Option D: 5.0 % of column load Option D: 5.0 % of column load Option D: 8.0 % of column load Option D: 5.0 % of column load Option A: $\leq 2.30 \varepsilon_w$ Q12. In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be, Option B: $\leq 4.00 \varepsilon_w$ Option D: $\leq 2.00 \varepsilon_w$ Option D: $\leq 2.00 \varepsilon_w$ Option D: ≤ 2				
Fe410 grade steel isOption A:166 N/mm²Option B:250 N/mm²Option C:240 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end battenOption A:1/2Option B:4/3Option C:3/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption B:2.5 % of column loadOption D:5.0 % of column loadOption D:8.0 % of column loadOption D:8.0 % of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option B: $\leq 230 \varepsilon_w$ Option D: $\leq 440 \varepsilon_w$ Option D: $\leq 240 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	1			
Option A:166 N/mm²Option B:250 N/mm²Option C:240 N/mm²Option D:227 N/mm²Q10.Depth of intermediate batten = of depth of end battenOption A:1/2Option B:4/3Option C:3/2Option D:3/4Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption B:2.5 % of column loadOption C:5.0 % of column loadOption D:8.0 % of column loadOption D:8.0 % of column loadOption B: $< 230 \varepsilon_w$ Option A: $< 230 \varepsilon_w$ Option B: $< 4400 \varepsilon_w$ Option C: $< 340 \varepsilon_w$ Option D: $< 2400 \varepsilon_w$ Option D: $< < 230 \varepsilon_w$ Option D: $< < 230 \varepsilon_w$ Option D: $< < 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	Q9.	For very short compression member the design compressive stress f_{cd} for		
Option B: 250 N/mm^2 Option C: 240 N/mm^2 Option D: 227 N/mm^2 Q10.Depth of intermediate batten = of depth of end battenOption A: $1/2$ Option B: $4/3$ Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption D: 8.0% of column loadOption D: 8.0% of column loadOption D: 8.0% of column loadOption B: $2.230 \varepsilon_w$ Option B: $\leq 230 \varepsilon_w$ Option B: $\leq 2400 \varepsilon_w$ Option C: $\leq 2400 \varepsilon_w$ Option D: $\leq 2400 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250		Fe410 grade steel is		
Option B: 250 N/mm^2 Option C: 240 N/mm^2 Option D: 227 N/mm^2 Q10.Depth of intermediate batten = of depth of end battenOption A: $1/2$ Option B: $4/3$ Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption D: 8.0% of column loadOption D: 8.0% of column loadOption D: 8.0% of column loadOption B: $2.230 \varepsilon_w$ Option B: $\leq 230 \varepsilon_w$ Option B: $\leq 2400 \varepsilon_w$ Option C: $\leq 2400 \varepsilon_w$ Option D: $\leq 2400 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option A:	166 N/mm^2		
Option D: 227 N/mm^2 Q10.Depth of intermediate batten = of depth of end battenOption A: $1/2$ Option B: $4/3$ Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadOption D: 5.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option B: $\leq 430 \varepsilon_w$ Option D: $\leq 230 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	Option B:			
Option D: 227 N/mm^2 Q10.Depth of intermediate batten = of depth of end battenOption A: $1/2$ Option B: $4/3$ Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option B: $\leq 230 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option C:	240 N/mm ²		
Q10.Depth of intermediate batten = of depth of end battenOption A: $1/2$ Option B: $4/3$ Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption D: 8.0% of column loadOption D: $4/3 \%$ of column loadOption D: 8.0% of column loadOption D: $400 \varepsilon_w$ Option B: $\leq 230 \varepsilon_w$ Option D: $\leq 2400 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	Option D:	227 N/mm ²		
$\begin{array}{c cccc} Option A: & 1/2 & & & \\ Option B: & 4/3 & & & \\ Option C: & 3/2 & & & \\ Option D: & 3/4 & & & \\ \hline & & & & \\ \hline & & & & \\ Q11. & Lacing shall be designed to resist transverse shear (Vt) equals to & \\ Option A: & 0.5 \% of column load & & \\ Option B: & 2.5 \% of column load & & \\ Option C: & 5.0 \% of column load & & \\ Option D: & 8.0 \% of column load & & \\ \hline & & & \\ Q12. & In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/tw should be, & \\ Option A: & \leq 230 \varepsilon_w & & \\ Option B: & \leq 400 \varepsilon_w & & \\ Option D: & \leq 200 \varepsilon_w & & \\ \hline & & \\ Q13. & In case of Plate Girder, If Elastic Critical Stresses (\tau_{cr,e}) =75 N/mm2 fyw=250 & \\ \hline \end{array}$				
$ \begin{array}{cccc} Option B: & 4/3 \\ Option C: & 3/2 \\ Option D: & 3/4 \\ \hline \\ Q11. & Lacing shall be designed to resist transverse shear (Vt) equals to \\ Option A: & 0.5 \% of column load \\ Option B: & 2.5 \% of column load \\ Option C: & 5.0 \% of column load \\ Option D: & 8.0 \% of column load \\ \hline \\ Q12. & In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/tw should be, \\ Option A: & \leq 230 \varepsilon_w \\ Option B: & \leq 400 \varepsilon_w \\ Option C: & \leq 340 \varepsilon_w \\ Option D: & \leq 200 \varepsilon_w \\ \hline \\ Q13. & In case of Plate Girder, If Elastic Critical Stresses (\tau_{cr,e}) =75 N/mm^2 fyw=250 \\ \hline \end{array} $	Q10.	Depth of intermediate batten = of depth of end batten		
Option C: $3/2$ Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option A:	1/2		
Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option B:	4/3		
Option D: $3/4$ Q11.Lacing shall be designed to resist transverse shear (Vt) equals toOption A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option C:	3/2		
Option A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250		3/4		
Option A: 0.5% of column loadOption B: 2.5% of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250				
Option B:2.5 % of column loadOption C: 5.0% of column loadOption D: 8.0% of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Q11.	Lacing shall be designed to resist transverse shear (Vt) equals to		
Option C:5.0 % of column loadOption D:8.0 % of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	Option A:	0.5 % of column load		
Option D:8.0 % of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option B:	2.5 % of column load		
Option D:8.0 % of column loadQ12.In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, d/t_w should be,Option A: $\leq 230 \varepsilon_w$ Option B: $\leq 400 \varepsilon_w$ Option C: $\leq 340 \varepsilon_w$ Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	Option C:			
$\begin{array}{ll} & \text{neutral axis to meet serviceability criteria then, } d/t_w \text{ should be,} \\ \hline \text{Option A:} & \leq 230 \ \varepsilon_w \\ \hline \text{Option B:} & \leq 400 \ \varepsilon_w \\ \hline \text{Option C:} & \leq 340 \ \varepsilon_w \\ \hline \text{Option D:} & \leq 200 \ \varepsilon_w \\ \hline \text{Q13.} & \text{In case of Plate Girder, If Elastic Critical Stresses } (\tau_{cr,e}) = 75 \ \text{N/mm}^2 \ \text{fyw} = 250 \end{array}$	_	8.0 % of column load		
$\begin{array}{ll} & \text{neutral axis to meet serviceability criteria then, } d/t_w \text{ should be,} \\ \hline \text{Option A:} & \leq 230 \ \varepsilon_w \\ \hline \text{Option B:} & \leq 400 \ \varepsilon_w \\ \hline \text{Option C:} & \leq 340 \ \varepsilon_w \\ \hline \text{Option D:} & \leq 200 \ \varepsilon_w \\ \hline \text{Q13.} & \text{In case of Plate Girder, If Elastic Critical Stresses } (\tau_{cr,e}) = 75 \ \text{N/mm}^2 \ \text{fyw} = 250 \end{array}$	_			
$\begin{array}{ll} \hline \text{Option B:} & \leq 400 \ \epsilon_w \\ \hline \text{Option C:} & \leq 340 \ \epsilon_w \\ \hline \text{Option D:} & \leq 200 \ \epsilon_w \\ \hline \end{array}$ $\begin{array}{ll} \hline \text{Q13.} & \text{In case of Plate Girder, If Elastic Critical Stresses } (\tau_{cr,e}) = 75 \ \text{N/mm}^2 \ \text{fyw} = 250 \\ \hline \end{array}$	Q12.	5		
$\begin{array}{ll} \hline \text{Option C:} & \leq 340 \ \epsilon_w \\ \hline \text{Option D:} & \leq 200 \ \epsilon_w \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	Option A:	$\leq 230 \varepsilon_{\rm w}$		
$\begin{array}{ll} \hline \text{Option C:} & \leq 340 \ \epsilon_w \\ \hline \text{Option D:} & \leq 200 \ \epsilon_w \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	Option B:			
Option D: $\leq 200 \varepsilon_w$ Q13.In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm² fyw=250	· ·			
Q13. In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250	· ·			
	·			
N/mm , then the snear stress corresponding to the buckling (τ_b) is	Q13.	In case of Plate Girder, If Elastic Critical Stresses ($\tau_{cr,e}$) =75 N/mm ² fyw=250 N/mm ² , then the shear stress corresponding to the buckling (τ_b) is		
Option A: 65.50 N/mm ²	Option A:			

Option B:	50.59 N/mm ²		
Option C:	75.79 N/mm ²		
Option D:	55.89 N/mm ²		
Q14.	Which of the following is advantage of HSFG bolts over bearing type bolts?		
Option A:	Joints are not rigid		
Option B:	Bolts are subjected to shearing and bearing stresses		
Option C:	High fatigue strength		
Option D:	Low static strength		
Q15.	Which of the following type of weld is suitable for butt joints?		
Option A:	Fillet weld		
Option B:	Groove weld		
Option C:	Slot weld		
Option D:	Plug weld		
016			
Q16.	Which of the following is the reason for beams, plate girders and columns		
	being spliced?		
Option A:	Full length is available from the mill		
Option B:	For aesthetic appearance		
Option C:	For easy transportation		
Option D:	For frictional resistance		
017	In a given connection if the holts are subjected to combined shoon & tension		
Q17.	In a given connection, if the bolts are subjected to combined shear & tension then the sofety of critical bolt is ensured by setisfying		
Ontion A:	then the safety of critical bolt is ensured by satisfying- (V - (V -) + (T -) = 1		
Option A:	$ \frac{(V_{sb} / V_{db}) + (T_b / T_{db}) \le 1}{(V_{sb} / V_{db})^2 + (T_b / T_{db})^2 \le 1} $		
Option B:			
Option C:	$\frac{(V_{sb} / V_{db}) + (T_b / T_{db}) \ge 1}{(V_{sb} / V_{db})^2 + (T_b / T_{db})^2 \ge 1}$		
Option D:	$(\mathbf{v}_{sb} / \mathbf{v}_{db}) + (1_{b} / 1_{db}) \geq 1$		
Q18.	For 20 mm diameter black bolt of grade 4.6, 240 N/mm ² is		
Option A:	Ultimate tensile stress		
Option B:	Design yield stress		
Option C:	Design shear stress		
Option D:	Design bearing stress		
-			
Q19.	The live load for a sloping roof with slope 15°, where access is not provided to		
	roof, is taken as		
Option A:	0.75 kN/m^2		
Option B:	0.55 kN/m^2		
Option C:	0.40 kN/m^2		
Option D:	0.65 kN/m^2		
Q20.	As per IS 875 the mean probable design life span for a hospital building is		
	taken as		
Option A:	5 years		
Option B:	25 years		
Option C:	50 years		
Option D:	100 years		

Q21.	Generally the purlins are placed at the panel points so as to allow only-	
Option A:	Axial force in rafter	
Option R:	Shear force in rafter	
Option D:	Deflection of rafter	
Option D:		
Option D.	Bending moment in rafter	
Q22.	The self-weight of a roof truss of span 30 m can be taken as	
Option A:	75 N/m ²	
Option B:	100 N/m^2	
Option C:	150 N/m^2	
Option D:	4000 N/m^2	
Q23.	The beam said to be laterally supported if-	
Option A:	Tension flange is supported throughout	
Option B:	Supported at both the ends only	
Option C:	Compression flange is supported throughout	
Option D:	Supported laterally at mid-span	
Q24.	For a single I-section as a beam, the web buckling should be checked-	
Option A:	At the junction of flange and web	
Option B:	At the root of fillet of web	
Option C:	At mid-point of flange	
Option D:	At mid-depth of web	
025	When $V < 0.6Vd$ then the design handing strength of become is given by	
Q25.	When $V \le 0.6Vd$, then the design bending strength of beams is given by	
Option A:	$\frac{\beta_b / Z_p f_y \gamma_{m0}}{\rho_{m0}}$	
Option B:	$\beta_b Z_p f_y / \gamma_{m0}$	
Option C:	$\beta_b Z_p / f_y \gamma_{m0}$	
Option D:	$\beta_b Z_p f_y \gamma_{m0}$	

Program: BE CIVIL Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: CEC602 and Course Name: Design and Drawing of Steel Structures

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or
	'B' or 'C' or 'D')
Q1.	C A
Q2.	Α
Q2. Q3. Q4.	В
Q4.	С
Q5.	D
Q5. Q6. Q7.	D
Q7.	D
Q8. Q9. Q10.	В
Q9.	D
Q10.	D
Q11.	В
Q12.	В
Q13.	C C
Q14.	С
Q15.	B C
Q16.	С
Q17.	В
Q18.	В
Q18. Q19.	D
Q20.	D
Q21.	Α
Q20. Q21. Q22.	A C C
Q23.	С
Q24.	D
Q25.	В