Program: BE CIVIL Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester VI
Course Code: CEC602 and Course Name: Design and Drawing of Steel Structures
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	For the steel of grade Fe $410,410 \mathrm{~N} / \mathrm{mm}^{2}$ is -
Option A:	Yield Stress
Option B:	Design stress
Option C:	Ultimate tensile stress
Option D:	Failure stress
Q2.	A tie member ISA $100 \times 75 \times 8$ with $\mathrm{A}_{\mathrm{g}}=16.50 \mathrm{~cm}^{2}$ connected with longer leg using 5-M16 black bolts. Approximate rupture strength of member will be nearly-
Option A:	313 KN
Option B:	320 KN
Option C:	305 KN
Option D:	330 KN
Q3.	Which of the following type of tension member is not mainly used in modern practice
Option A:	open section such as angles
Option B:	Flat bars
Option C:	Double angles
Option D:	Circular section
Q4.	What is the effective length when both the end of compression member are Hinged?
Option A:	0.65 L
Option B:	0.80 L
Option C:	1.00 L
Option D:	2.00 L
Q5.	The value of imperfection factor for a compression member for buckling class "d" member is-
Option A:	0.34
Option B:	0.45
Option C:	0.21
Option D:	0.76

Q6.	Width of end batten in built-up column, when two channel sections are placed toe-to-toe is
Option A:	S+2g
Option B:	S-2g
Option C:	S+Cy ${ }_{\text {y }}$
Option D:	S
Q7.	In case of Fillet Weld to calculate Size of weld, if the value of " k is 0.55 " then the Angle of Fusion will be
Option A:	60-90 degrees
Option B:	91-100 degrees
Option C:	101-106 degrees
Option D:	107-113 degrees
Q8.	Under exactly identical conditions ,battened column as compared to laced column is
Option A:	Equal in strength
Option B:	Weaker in strength
Option C:	Stronger in strength
Option D:	50\% stronger
Q9.	For very short compression member the design compressive stress f_{cd} for Fe 410 grade steel is
Option A:	$166 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$250 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$240 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$227 \mathrm{~N} / \mathrm{mm}^{2}$
Q10.	Depth of intermediate batten $=\ldots \ldots$ of depth of end batten
Option A:	1/2
Option B:	4/3
Option C:	3/2
Option D:	3/4
Q11.	Lacing shall be designed to resist transverse shear (Vt) equals to
Option A:	0.5% of column load
Option B:	2.5% of column load
Option C:	5.0% of column load
Option D:	8.0\% of column load
Q12.	In case of Plate Girder when there is second longitudinal stiffeners provided at neutral axis to meet serviceability criteria then, $\mathrm{d} / \mathrm{t}_{\mathrm{w}}$ should be,
Option A:	$\leq 230 \varepsilon_{\text {w }}$
Option B:	$\leq 400 \varepsilon_{\text {w }}$
Option C:	$\leq 340 \varepsilon_{\text {w }}$
Option D:	$\leq 200 \varepsilon_{\text {w }}$
Q13.	In case of Plate Girder, If Elastic Critical Stresses $\left(\tau_{\text {cr,e }}\right)=75 \mathrm{~N} / \mathrm{mm}^{2}$ fyw $=250$ $\mathrm{N} / \mathrm{mm}^{2}$, then the shear stress corresponding to the buckling $\left(\tau_{\mathrm{b}}\right)$ is
Option A:	$65.50 \mathrm{~N} / \mathrm{mm}^{2}$

Q21.	Generally the purlins are placed at the panel points so as to allow only-
Option A:	Axial force in rafter
Option B:	Shear force in rafter
Option C:	Deflection of rafter
Option D:	Bending moment in rafter
Q22.	The self-weight of a roof truss of span 30 m can be taken as
Option A:	$75 \mathrm{~N} / \mathrm{m}^{2}$
Option B:	$100 \mathrm{~N} / \mathrm{m}^{2}$
Option C:	$150 \mathrm{~N} / \mathrm{m}^{2}$
Option D:	$4000 \mathrm{~N} / \mathrm{m}^{2}$
Q23.	The beam said to be laterally supported if-
Option A:	Tension flange is supported throughout
Option B:	Supported at both the ends only
Option C:	Compression flange is supported throughout
Option D:	Supported laterally at mid-span
Q24.	For a single I-section as a beam, the web buckling should be checked-
Option A:	At the junction of flange and web
Option B:	At the root of fillet of web
Option C:	At mid-point of flange
Option $\mathrm{D}:$	At mid-depth of web
Q25.	When $\mathrm{V} \leq 0.6 \mathrm{Vd}$, then the design bending strength of beams is given by
Option A:	$\beta_{\mathrm{b}} / \mathrm{Z}_{\mathrm{p}} \mathrm{f}_{\mathrm{y}} \gamma_{\mathrm{m} 0}$
Option B:	$\beta_{\mathrm{b}} \mathrm{Z}_{\mathrm{p}} \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 0}$
Option C:	$\beta_{\mathrm{b}} \mathrm{Z}_{\mathrm{p}} / \mathrm{f}_{\mathrm{y}} \gamma_{\mathrm{m} 0}$
Option D:	$\beta_{\mathrm{b}} \mathrm{Z}_{\mathrm{p}} \mathrm{f}_{\mathrm{y}} \gamma_{\mathrm{m} 0}$

Program: BE CIVIL Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester VI
Course Code: CEC602 and Course Name: Design and Drawing of Steel Structures
Time: 1 hour
Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	B
Q4.	C
Q5.	D
Q6.	D
Q7.	D
Q8.	B
Q9.	D
Q10.	D
Q11.	B
Q12.	B
Q13.	C
Q14.	C
Q15.	B
Q16.	C
Q17.	B
Q18.	B
Q19.	D
Q20.	D
Q21.	A
Q22.	C
Q23.	C
Q24.	D
Q25.	B

