Program：TE Electrical Engineering
Curriculum Scheme：Revised 2012
Examination：Third Year Semester VI
Course Code：EEC602 and Course Name：Electrical Machine－III
Time： 1 hour
Max．Marks： 50

ニニニ＝

Note to the students：－All the Questions are compulsory and carry equal marks ．

Q1．	Which one of the following methods would give higher than actual value of regulation of an alternator
Option A：	ZPF method
Option B：	MMF method
Option C：	EMF method
Option D：	ASA Method
Q2．	Due to short pitching，the induced emf gets
Option A：	Reduced
Option B：	increased
Option D：	None of these

Q3.	In a 4 pole, 3 phase alternator, armature has 40 slots. It is using an armature winding which is short pitched by one slot. Its coil span factor is
Option A:	0.9
Option B:	0.9423
Option C:	0.9476
Option D:	0.9876
Q4.	In Potier's triangle method, to determine armature leakage reactance and armature reaction mmf separately, the tests performed are
Option B:	RYB Option A: Open circuit test and short circuit test Option B: Option
Open circuit test and zero power factor test	
	Short circuit test and zero power factor test Op: Open circuit test, short circuit test and zero power factor test case the field current is reversed, the phase sequence will become
	RBY

Option C:	YRB
Option D:	None of the above.
Q6.	Under no load condition ,power drawn by the prime mover goes to
Option A:	produce induced emf in armature winding
Option B:	meet no load losses
Option C:	produce power in the armature
Option D:	meet cu losses both in armature and rotor
Option A:	zero leading
Q7.	For parallel operation ,a.c. polyphase alternators must have the same
Option C:	KVA rating
Option D:	excitation
Option B:	voltage rating
	speed

Option B:	zero lagging
Option C:	unity pf
Option D:	o.8lagging
Q9.	
Option A:	O.C. characteristics and zpf characteristics
Option B:	O.C. characteristics and S.C. characteristics leakage reactance can be determined by
Option C:	slip test and o.c. test
Option D:	field MMF
Option D:	slip test and s.c. test
Option A:	direct axis
Option B:	quadrature axis

Q11.	The current output of the alternator is taken through
Option A:	commutator segment
Option B:	slip ring
Option C:	carbon brushes
Option D:	solid connection
Q12.	In a cylindrical synchronous machine ,the phasor summation of stator MMF and rotor MMF is possible because
Option A:	two MMF are rotating in opposite directions
Option C:	Magnetizing/Demagnetzing
Option B:	two MMF are rotating in same direction
O13.	The armature mmf component along the quadrature axis results in ----------------------- Option C: Option B:
	Magn is stationary and the other is rotating

Option D:	Demagnetizing
Q14.	Choose the correct relationship.
Option A:	Fd=Fa*cos Ψ
Option B:	Fd=Fa*sin Ψ
Option C:	Fd=Fa
Option D:	Fd=Fa*tan Ψ
Q15.	The reluctance power in salient pole synchronous generator is developed due to variation of Option A: Option D: Optiontaining constant excitation Option B:
reluctance in air gap voltage	

Option B:	Running the motor on leading power factors
Option C:	Providing damper bars in the rotor poles faces
Option D:	Oscillations cannot be damped
Q17.	The operating speed of a synchronous motor can be changed to new fixed value by
Option A:	Changing the load
Option B:	Changing the supply voltage
Option C:	Changing frequency
Option D:	Using brakes
Q18.	The number of poles on a pony motor employed for starting of a 3-phase synchronous motor should be \qquad than that on synchronous motor
Option A:	lesser than
Option B:	more than
Option C:	equal to

Option D:	depend on armature current.
Q19.	A thee phase synchronous motor hunts due to
Option A:	Fluctuating load
Option B:	Fluctuating supply voltage
Option C:	Excessive field current
Option D:	Faulty connections
Q20.	When synchronous motor is started ,field winding is energized
Option A:	halved
Option A:	In the very beginning
Option B:	When motor attains a speed slightly less than the synchronous speed.
	after motor has attained the synchronous speed and synchronized

Option B:	remains same
Option C:	tripled
Option D:	doubled
Q22.	Field Self Inductance in a Synchronous machine is
Option A:	zero
Option B:	constant
Option C:	varies with respect to time
Option D:	varies with respect to space
Option D:	directly proportional to double the value
Option A:	inversely proportional
	irrelevant
	How is SCR related to the physical size and cost of the synchronous machine?

Q24.	Direct axis reactance is defined as the ratio of
Option A:	Vmax to Imax
Option B:	Vmin to Imax
Option C:	Vmin to Imin
Option D:	Vmax to Imin
Q25.	Quadrature axis synchronous reactance is the ratio of
Option A:	Vmax to Imax.
Option B:	Vmin to Imax
Option C:	Vmin to Imin

Program: TE Electrical Engineering
Curriculum Scheme: Revised 2012
Examination: Third Year Semester VI
Course Code: EEC602and Course Name: Electrical Machine-III

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	D
Q4	B
Q5	B
Q6	B
Q7	B
Q8.	B
Q9.	A
Q10.	B
Q11.	D
Q12.	D
Q13.	A
Q14.	B
Q15.	B
Q16.	C
Q17.	C

Q18.	A
Q19.	A
Q20.	B
Q21.	D
Q22.	B
Q23.	C
Q24.	D
Q25.	B

