University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Final Year Semester VI

Course Code: CHC602

Course Name: Mass Transfer Operations II

Time: 1 hour Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	Rayleigh's equation is applicable to distillation.		
Option A:	Simple Distillation		
Option B:	Steam distillation		
Option C:	Extractive distillation		
Option D:	Flash Distillation		
Ans:			
Q2.	Steam distillation is applied to liquids which		
Option A:	form azeotrpes		
Option B:	are highly viscous		
Option C:	decompose if distilled directly at atmospheric pressure		
Option D:	are complex mixtures		
Ans:			
Q3.	In a plate type distillation column, an ideal plate is defined as one where		
Option A:	the vapour and liquid leaving streams are in equilibrium		
Option B:	the vapour and liquid entering streams are in equilibrium		
Option C:	the vapour leaving stream is in equilibrium with the liquid entering streams		
Option D:	the vapour entering stream is in equilibrium with the liquid leaving streams		
Ans:			
Q4.	The relative volatility of a binary mixture at the Azeotropic composition is		
Option A:	>1		
Option B:	0		
Option C:	∞		

Option D:	1		
Ans:			
Q5.	Separation of two volatile liquids by distillation makes use of their		
Option A:	Selectivity		
Option B:	relative volatility		
Option C:	density difference		
Option D:	Solubility		
Ans:			
Q6.	Raoult's law is applicable to the		
Option A:	Real solutions		
Option B:	Non-ideal gases		
Option C:	Ideal solutions		
Option D:	solid mixtures		
Ans:			
Q7.	Entrainer used in Azeotropic distillation should		
Option A:	Form a low boiling azeotrope with one of the constituents of the mixture		
Option B:	Form a new azeotrope of low relative volatility with one of the constituents of		
	the mixture		
Option C:	Have high latent heat of vaporization		
Option D:	Have high viscosity to provide high tray efficiency		
Ans:			
Q8.	Flash vaporization is a		
Option A:	Differential distillation		
Option B:	Steam distillation		
Option C:	Azeotropic distillation		
Option D:	Equilibrium distillation		
Ans:			
Q9.	The raffinate phase is extraction is		
Option A:	The solvent rich phase		
Option B:	The original solution from which solute has been recovered.		
Option C:	The solvent phase separated from the extract phase		
Option D:	The solute separated from the extract phase.		
Ans:			
0.16			
Q10.	The distribution coefficient is defined as		
Option A:	Product of concentration in extract phase and concentration in raffinate phase		
Option B:	Ratio of concentration in raffinate phase to concentration in extract phase		
Option C:	Ratio of concentration in extract phase to concentration in raffinate phase		
Option D:	Difference in concentration of extract and raffinate phase		
Ans:			

Q11.	Larger value of the distribution coefficient		
Option A:	More is the solvent required		
Option B:	No solvent is required		
Option C:	There is no effect of the amount of solvent used		
Option D:	Less is the solvent		
Ans:	LCSS 15 the SOLVEIR		
7 XIIS.			
Q12.	In liquid extract, the liquid with which the feed solution is contacted is called as		
Option A:	Entrainer		
Option B:	Reflux		
Option C:	Solvent		
Option D:	Solute		
Ans:			
Q13.	In cross-current liquid-liquid extraction		
Option A:	The Solvent enter the first stage.		
Option B:	Fresh solvent is added to each stage		
Option C:	The solvent enters the last stage		
Option D:	The solvent is added to alternate stage		
Ans:			
Q14.	Perfumes from flowers can be obtained by		
Option A:	Drying		
Option B:	Adsorption		
Option C:	Crystallization		
Option D:	Leaching		
Ans:			
Q15.	Example for Leaching equipment		
Option A:	Ion exchanger		
Option B:	Plate Column		
Option C:	Bollmann Extractor		
Option D:	Sparged Column		
Ans:			
Q16.	For better Leaching, the viscosity of the solvent should be		
Option A:	High		
Option B:	Less		
Option C:	Equal to feed mixture		
Option D:	Negligible Negligible		
Ans:			
Q17.	In chemical adsorption, how many layers are adsorbed		
Option A:	One		

Option B:	Two		
Option C:	Many		
Option D:	Zero		
Ans:			
12.1			
Q18.	Which is favourable for physical adsorption?		
Option A:	High T and high P		
Option B:	High T and low P		
Option C:	Low T and high P		
Option D:	T and P do not affect		
Ans:			
Q19.	Breakpoint time		
Option A:	increases with decrease in bed height		
Option B:	decreases with decreases bed height		
Option C:	not affected by bed height		
Option D:	first increases and then decreases with bed height		
Ans:			
Q20.	In adsorption of oxalic acid on activated charcoal, the activated charcoal is		
	known as		
Option A:	Adsorbent		
Option B:	Absorbate		
Option C:	Adsorber		
Option D:	Absorber		
Ans:			
Q21.	At room temperature, the impure compound in crystallization is		
Option A:	Soluble		
Option B:	Sparingly soluble		
Option C:	Insoluble		
Option D:	Forming precipitate		
Ans:			
Q22.	One of the most common solvent used in crystallization are		
Option A:	Water		
Option B:	Alcohol		
Option C:	Normal saline		
Option D:	Sulphuric acid		
Ans:			
Q23.	Which of the following is not an application of transport in membranes?		
Option A:	Microfiltration		
Option B:	Reverse osmosis		
Option C:	Dialysis		

Option D:	Fractional distillation	
Ans:		
Q24.	Which of the following is not true about membrane separations?	
Option A:	Components which are passed through the membrane is called permeate	
Option B:	Components which are not passed through are called retentate	
Option C:	Non-porous membrane is never used	
Option D:	Membrane separations require a driving force	
Ans:		
Q25.	What is the driving force in Microfiltration?	
Option A:	Pressure difference	
Option B:	Temperature difference	
Option C:	Concentration difference	
Option D:	Fugacity difference	
Ans:		

University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester VI

Course Code: CHC602

Course Name: Mass Transfer Operation II

Time: 1 hour Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or
	'C' or 'D'
Q1.	A
Q2.	С
Q3.	A
Q4	D
Q3. Q4 Q5	В
Q6	С
Q7	Α
Q8.	D
Q9.	В
Q10.	С
Q11.	D
Q12.	С
Q13.	В
Q14.	D
Q15.	С
Q16.	В
Q17.	A
Q18.	С
Q19.	В
Q20.	A
Q21.	В
Q22.	Α
Q23.	D
Q24.	С
Q25.	Α