University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester: V

Course Code: CHC502

Course Name: Mass Transfer Operations I

Time: 1 hour

Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The ratio of mass concentration of species and the total mass density of the	
	mixture is known as	
Option A:	Mass density	
Option B:	Concentration	
Option C:	Mole fraction	
Option D:	Mass fraction	
Ans:		
Q2.	Which among the following is always true for mass transfer to occur?	
Option A:	Difference in concentration	
Option B:	Difference in Pressure	
Option C:	Difference in temperature	
Option D:	Difference in chemical potential	
Ans:		
Q3.	For the calculation of Mass average velocity, which velocity of the molecule is	
X 2.	To the emetadori of Muss average velocity, which velocity of the molecule is	

	used?	
Option A:	Instantaneous Velocity	
Option B:	Instantaneous Velocity as well as Mean Velocity	
Option C:	Mean Velocity	
Option D:	Bulk velocity of the mixture	
Ans:		
Q4.	Which among the following is the statement of the 'Fick's Law'?	
Option A:	The molar flux of species relative to an observer moving with the molar average velocity is proportional to the concentration gradient of the species.	
Option B:	The mass flux of species relative to an observer moving with the molar average velocity is proportional to the concentration gradient of the species	
Option C:	The molar flux of species relative to an observer moving with the mass average velocity is proportional to the concentration gradient of the species.	
Option D:	The molar flux of species relative to a stationary observer is proportional to the concentration gradient of the species.	
Ans:		
Q5.	For what kind of mixtures $D_{AB} = D_{BA}$ holds?	
Option A:	Ideal	
Option B:	Real	
Option C:	For both real and ideal	
Option D:	This relation is never true	
Ans:		

Q6.	For steady state equi-molal diffusion in a stagnant film, mass transfer coefficient is the ratio of molecular diffusivity to the thickness of the		
Option A:	turbulent flow layer		
Option B:	convective flow layer		
Option C:	eddy current layer		
Option D:	stagnant layer		
Ans:			
07			
Q7.	A correlation for mass transfer at high Schmidt numbers (430 to 100,000) is		
Option A:	$N_{\rm Sh} = 0.0096 N_{\rm Re}^{0.913} N_{\rm Sc}^{0.346}$		
Option B:	$N_{Sh} = 0.0096 N_{Nu} {}^{0.913} N_{Sc} {}^{0.346}$		
Option C:	$N_{Sh} = 0.0096 N_{Pr}^{0.913} N_{Sc}^{0.346}$		
Option D:	$N_{Sh} = 0.0096 N_{Gz}^{0.913} N_{Sc}^{0.346}$		
Ans:			
Q8.	In principle, there is no need of mass-transfer coefficients for		
Option A:	turbulent flow		
Option B:	convective flow		
Option C:	transition flow		
Option D:	laminar flow		
Ans:			

Q9.	A stream of air at 100 kPa pressure and 300 K is flowing on the top surface of a thin flat sheet of solid naphthalene of length 0.2 m with a velocity of 20 m/sec. Mass diffusivity of naphthalene vapor in air = $6 \times 10^{-6} \text{ m}^2/\text{sec}$, Kinematic viscosity of air = $1.5 \times 10^{-5} \text{ m}^2/\text{s}$, Concentration of naphthalene at the air-solid naphthalene interface = $1 \times 10^{-5} \text{ kmol/m}^3$.Calculate the overage mass transfer coefficient over the flat plate.	
Option A:	0.014 m/sec	
Option B:	0.015 m/sec	
Option C:	0.016 m/sec	
Option D:	0.013 m/sec	
Ans:		
Q10.	The Concentration of the two phases in a closed system at the interphase is	
Option A:	Changes continuously	
Option B:	Never changes	
Option C:	Becomes zero	
Option D:	Increases till the driving force becomes zero	
Ans:		
Q11.	In a concurrent process, the entering and leaving stream of the liquid phase concentrations in terms mole ratio is 0.25 and 0.45 also the entering and leaving stream concentration of the gas phase in terms mole ratio is 0.4 and 0.6. Find the slope of the operating line.	
Option A:	1	
Option B:	2	
Option C:	3	

Flooding in a vapor-liquid contacting equipment occurs in a tray, when pressure drop through a tray is the liquid head available in downcomer.	
less than	
more than	
same as	
very much less	
During gas dispersion, if a chemical reaction between gas and liquid phase is needed, then the preferred equipment is	
Agitated vessel	
Sparged vessel	
Tray tower	
Wetted wall column	
In a packed bed absorption column, the channeling will be noted by the	
increase in flow rate	
sharp drop in pressure drop.	
sharp rise in pressure drop.	
No change in Pressure drop.	

Q15.	Find the absorption tower height if Number of gas phase transfer units is 4.09 and height of the gas phase transfer unit is 1.5 meters.	
Option A:	2.72 meters	
Option B:	0.36 meters	
Option C:	6.135 meters	
Option D:	0. 50 meters	
Ans:		
Q16.	The reciprocal of stripping factor is termed as	
Option A:	Selectivity Index	
Option B:	Relative Volatility	
Option C:	Absorption Factor	
Option D:	Marphree Efficiency	
Ans:		
Q17.	With increase in the liquid flow rate at a fixed gas velocity in a randomly packed counter current gas-liquid absorption column, the gas pressure drop	
Option A:	Decreases	
Option B:	Remains unchanged	
Option C:	Increases	
Option D:	Decreases exponentially	
Ans:		
Q18.	The height equivalent to a theoretical plate (HETP) changes with flow rates?	
Option A:	because flow rates affect the absorption rates	

Option B:	because flow rates does not affect the absorption rates	
Option C:	because flow rates are in cross-current manner	
Option D:	because flow rates are in co-current manner	
Ans:		
Q19.	If the equilibrium vapour pressure is lower than pure liquid pressure then the moisture content is	
Option A:	Bound moisture	
Option B:	Unbound moisture	
Option C:	Equilibrium moisture	
Option D:	Critical moisture	
Ans:		
Q20.	Convert 5 kg of moisture /kg of dry solid to wet basis	
Option A:	3/6	
Option B:	4/6	
Option C:	5/6	
Option D:	1	
Ans:		
Q21.	The method of drying by conduction through materials are done by	
Option A:	Direct driers	
Option B:	Indirect driers	
Option C:	Tray driers	
Option D:	Rotary driers	
Ans:		

Q22.	When dry bulb temperature (DBT) and wet bulb temperature (WBT) are	
	measured, greater the difference between DBT and WBT,	
Option A:	greater the amount of water vapour held in the mixture	
Option B:	smaller the amount of water vapour held in the mixture	
Option C:	same the amount of water vapour held in the mixture	
Option D:	no amount of water vapour held in the mixture	
Ans:		
Q23.	The temperature at which the air cannot hold all the water vapour mixed in it	
Q25.	and some vapour starts condensing is called as	
Option A:	humidification temperature	
Option B:	dehumidification temperature	
Option C:	dew point temperature	
Option D:	saturation temperature	
Ans:		
Q24.	When the dew point temperature is equal to the air temperature then the relative	
Q24.	humidity is	
Option A:	0%	
Option B:	50%	
Option C:	60%	
Option D:	100%	
Ans:	D	

Q25.	On psychrometric chart, wet bulb temperature lines are
Option A:	horizontal with uniformly spaced
Option B:	horizontal with non-uniformly spaced
Option C:	inclined with uniformly spaced
Option D:	inclined with non-uniformly spaced
Ans:	

University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: CHC502

Course Name: Mass Transfer Operation I

Time: 1 hour

Max. Marks: 50

_

Question	Correct Option (Enter either 'A' or 'B' or
	(Enter either A or B or 'C' or 'D'
Q1.	D
Q2.	D
Q3.	С
Q3. Q4 Q5 Q6 Q7	A
Q5	A
Q6	D
Q7	A
Q8.	D
Q9.	A
Q10.	В
Q11.	A
Q12.	В
Q13.	A
Q14.	В
Q15.	С
Q16.	C
Q17.	С
Q18.	A
Q19.	A
Q20.	С
Q21.	В
Q22.	В
Q23.	С
Q24. Q25.	D
Q25.	С