Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester: V

Course Code: CEC501
 Course Name: Structural Analysis-II

Time: 1 hour
Max. Marks: 50
Note to the students: All the Questions are compulsory and carry equal marks.

Q1.	The number of independent displacement components at a rigid beam-column joint of a plane frame is
Option A:	One
Option B:	Two
Option C:	Three
Option D:	Four
Q2.	A pin-jointed plane frame with (m) members, (j) joints \& (r) reactions, is unstable if
Option A:	$(\mathrm{m}+\mathrm{r})<2 \mathrm{j}$
Option B:	$(m+r)=2 j$
Option C:	$(m+r)>2 j$
Option D:	$(m+j)>3 r$
Q3.	Internal work of displacement multiplied by incremental load over the total loads and over the volume is known as
Option A:	Kinetic energy
Option B:	Potential energy
Option C:	Complementary energy
Option D:	Resilience
Q4.	For a simply supported beam of flexural rigidity (EI), with span "L", point load "W" at center, the central deflection is?
Option A:	$\left(\mathrm{WL}^{3}\right) / 48 \mathrm{EI}$
Option B:	$\left(\mathrm{WL}^{2}\right) / 48 \mathrm{EI}$
Option C:	$\left(\mathrm{WL}{ }^{4}\right) / 48 \mathrm{EI}$
Option D:	(WL)/48EI
Q5.	When axial deformations are neglected in analysis of frames under temperature stresses, which condition is considered?
Option A:	Area of AFD $=0$
Option B:	Area of $\mathrm{BMD}=0$
Option C:	Coefficient of thermal expansion $=0$
Option D:	Change in temperature $=0$
Q6.	In Clapeyron's Theorem of Three Moments, with standard notations, A_{1}

	represents area of first BMD on left side, then what is represented by x_{1} ?
Option A:	Deflection at point below the load
Option B:	Span from the left end.
Option C:	Centroid distance of first BMD from left end of the span.
Option D:	Point of Contra-flexure measured from left
Q7.	Flexibility method is
Option A:	Displacement method
Option B:	Energy method
Option C:	Force method
Option D:	Strain energy method
Q8.	The flexibility coefficient of free end of the cantilever (Length L \& flexural rigidity El) with the coordinate as a unit moment at the free end, is
Option A:	(L/EI)
Option B:	($\left.L^{2} / \mathrm{ELI}^{3}\right)$
Option C:	($\left.L^{3} / E I\right)$
Option D:	($\left.L^{4} / E I\right)$
Q9.	If a spring has force (P) \& deformation (Δ), it's flexibility is
Option A:	$\mathrm{P} / \mathrm{\Delta}$
Option B:	Δ / P
Option C:	P X \triangle
Option D:	$\mathrm{P}^{2} \Delta$
Q10.	The stiffness matrix of an element is given as $\frac{2 \mathrm{EI}}{\mathrm{L}}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Then Flexibility matrix is
Option A:	$\frac{\mathrm{L}}{5 \mathrm{EI}}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
Option B:	$\frac{\mathrm{L}}{6 \mathrm{EI}}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
Option C:	$\frac{\mathrm{L}}{2 \mathrm{EI}}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Option D:	$\frac{\mathrm{L}}{\text { 3EI }}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
Q11.	Which of the following equation is used in Stiffness matrix method? Where [F] = External Force, $[\mathrm{PL}]=$ Forces in fully restrained structure, $[\mathrm{S}]=$ Stiffness matrix, [Δ] = Unknown displacement
Option A:	[F]=[PL]-[S][Δ]
Option B:	$[\Delta]=[\mathrm{PL}]+[\mathrm{S}][\mathrm{F}]$

Option C:	$[\Delta]=[\mathrm{F}]+[\mathrm{S}][\mathrm{PL}]$
Option D:	$[\mathrm{F}]=[\mathrm{PL}]+[\mathrm{S}][\Delta]$
Q12.	Free moment diagram for a span AB of length 3 m carrying UDL of $10 \mathrm{kN} / \mathrm{m}$ is
Option A:	Triangle with maximum ordinate 7.5 kNm
Option B:	Symmetric Parabola with maximum ordinate 11.25 kNm
Option C:	Symmetric Parabola with maximum ordinate 28.7 kNm
Option D:	Triangle with maximum ordinate 15 kNm
Q13.	A two span continuous beam $A B C$ has left support A as fixed support, B and C are roller supports. If the beam is to be analyzed by slope deflection method, what are the unknowns to be determined?
Option A:	$\theta_{a} \& \theta_{b}$
Option B:	$\theta_{\mathrm{a}} \& \theta_{\mathrm{c}}$
Option C:	$\theta_{\text {a }}$
Option D:	$\theta_{b} \& \theta_{c}$
Q14.	A continuous beam $A B C$ has A and C as fixed supports and B is the intermediate roller support. It carries a UDL of $30 \mathrm{kN} / \mathrm{m}$ in span $A B$ and $20 \mathrm{kN} / \mathrm{m}$ in span $B C$. Span $A B=B C=L$. El is constant throughout the section. What will be the slope deflection equation for $M_{b a}$ ($\mathrm{M}_{\mathrm{fba}}$ is the fixed end moments)?
Option A:	$\mathrm{M}_{\mathrm{fba}}+2 \mathrm{EI} / \mathrm{L}\left(2 \theta_{\mathrm{A}}+\theta_{\mathrm{B}}-3 \Delta / \mathrm{L}\right)$
Option B:	$\mathrm{M}_{\mathrm{fba}}+2 \mathrm{EI} / \mathrm{L}\left(\theta_{\mathrm{A}}+2 \theta_{\mathrm{B}}-3 \Delta / \mathrm{L}\right)$
Option C:	$\mathrm{M}_{\mathrm{fba}}+2 \mathrm{El} / \mathrm{L}\left(\theta_{\mathrm{A}}+\theta_{\mathrm{B}}-3 \Delta / \mathrm{L}\right)$
Option D:	$\mathrm{M}_{\mathrm{fba}}+2 \mathrm{EI} / \mathrm{L}\left(2 \theta_{\mathrm{A}}+\theta_{\mathrm{B}}-2 \Delta / \mathrm{L}\right)$
Q15.	What is stiffness?
Option A:	When a moment is applied at one end of a member allowing rotation of that end and fixing the far end, some moment develops at the far end also.
Option B:	The ratio of moment shared by a member to the applied moment at the joint
Option C:	Moment required to rotate an end by unit angle (1 radian) when rotation is permitted at the end.
Option D:	The ratio of carry over moment to applied moment
Q16.	Displacement factor in Kani's method
Option A:	$-\frac{1}{2}\left(\frac{k}{\in k}\right)$
Option B:	$-\frac{3}{2}\left(\frac{k}{\in k}\right)$
Option C:	$\frac{1}{2}\left(\frac{k}{\epsilon k}\right)$
Option D:	$\frac{3}{2}\left(\frac{k}{\epsilon k}\right)$

Q17.	A propped cantilever of span (L) is subjected to a concentrated load at mid-span. If M_{p} is plastic moment capacity of beam, then the value of collapse load will be
Option A:	$12 \mathrm{M} / \mathrm{L}$
Option B:	$8 \mathrm{M} / \mathrm{L}$
Option C:	$6 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
Option D:	$4 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
Q18.	Plastic analysis is applicable to a structure made of which one of the following?
Option A:	Ductile \& brittle materials
Option B:	Any structural material
Option C:	Brittle material only
Option D:	Ductile material only
Q19.	The moment capacity at a section of plastic hinge equals
Option A:	Yield moment
Option B:	Zero
Option C:	Fully plastic moment
Option D:	Twice the yield moment
Q20.	Portal frames are frequently used in a building to
Option A:	Transfer vertical forces
Option B:	Transfer moment
Option C:	Transfer horizontal forces
Option D:	Transfer horizontal force applied at top of frame to foundation
Q21.	What is the degree of static indeterminacy of a simple portal frame whose both ends are fixed?
Option A:	Zero
Option B:	One
Option C:	Two
Option D:	Three
Q22.	How many slope deflection equations are available for a three span continuous beams
Option A:	3
Option B:	6
Option C:	4
Option D:	8
Q23.	The size of the flexibility matrix for a simple portal frame with one end fixed \& other end roller- supported is
Option A:	(1×1)
Option B:	(2 X2)
Option C:	(3 X3)
Option D:	(4 X 4)

Q24.	Theorem of least work is also known as
Option A:	Castigliano's first theorem
Option B:	Castigliano's second theorem
Option C:	Principle of virtual work
Option D:	Betty's theorem
Q25.	In moment distribution method, at a joint, if distribution factor for one member is 0.4, what is the distribution factor for the other member at the same joint?
Option A:	0.6
Option B:	0.5
Option C:	0.2
Option D:	0.4

Program: BE Civil Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester: V
Course Code: CEC501
Course Name: Structural Analysis-II
Time: 1 hour
Max. Marks: 50

Answer Keys:

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	C
Q4	A
Q5	A
Q6	C
Q7	C
Q8.	A
Q9.	B
Q10.	B
Q11.	D
Q12.	B
Q13.	D
Q14.	B
Q15.	C
Q16.	B
Q17.	C
Q18.	D

Q19.	C
Q20.	C
Q21.	D
Q22.	B
Q23.	A
Q24.	B
Q25.	A

