Program: BE-Civil Engineering

Curriculum Scheme: Revised 2012
Examination: Third Year Semester V
Course Code: CEC501 and Course Name: STRUCTURAL ANALYSIS II
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	For beam shown below, the Stiffness coefficient S11 can be written as,
Option A:	4EI/6
Option B:	9EI/8
Option C:	4EI/3
Option D:	7EI/3
Q2.	Which of the following relation about plastic moment is correct?
Option A:	$\mathrm{Mp}=\mathrm{Zp}$ /fy
Option B:	$\mathrm{Mp}=\mathrm{Zp}+\mathrm{fy}$
Option C:	$\mathrm{Mp}=\mathrm{Zpfy}$
Option D:	$\mathrm{Mp}=\mathrm{Zp}-\mathrm{fy}$
Q3.	The carry over factor in a prismatic member whose far end is fixed
Option A:	0
Option B:	0.5
Option C:	0.75
Option D:	1
Q4.	Select the correct formula of fixed end moment of a fixed beam subjected to uniformly distributed load. ($\mathrm{W}=\mathrm{udl}$)
Option A:	$\mathrm{Wl}^{2} / 8$
Option B:	$\mathrm{WI}^{2} / 36$
Option C:	$\mathrm{WI}^{2} / 12$
Option D:	$\mathrm{Wl}^{2} / 4$
Q5.	What is shape factor of a Rectangular section?
Option A:	1
Option B:	1.5
Option C:	2
Option D:	2.5

Q6.	Select correct formula of Distribution factor from the given option (k- Stiffness factor, $\Sigma \mathrm{K}$ - Joint Stiffness Factor)
Option A:	K * 2 K
Option B:	EK/K
Option C:	K/EK
Option D:	K+ K K
Q7.	What is the Area of BMD, when a simply supported beam of span 6 m , subjected to a point load 50 kN at the center
Option A:	225
Option B:	255
Option C:	275
Option D:	300
Q8.	Shape factor is always:
Option A:	Less than 1
Option B:	Equal to Zero
Option C:	Equal to infinity
Option D:	Greater than 1
Q9.	Clapeyron's three moment theorem cannot be applied to
Option A:	Continuous beam
Option B:	Fixed Beam
Option C:	Rigid jointed frame
Option D:	Simple Pin-Jointed Frame
Q10.	The stiffness matrix of element is given as $\frac{2 \mathrm{EI}}{\mathrm{L}}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Then Flexibility matrix is,
Option A:	$\frac{\mathrm{L}}{5 \mathrm{EI}}\left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right]$
Option B:	$\frac{\mathrm{L}}{6 \mathrm{EI}}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
Option C:	$\frac{\mathrm{L}}{2 \mathrm{EI}}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Option D:	$\frac{\mathrm{L}}{3 \mathrm{EI}}\left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right]$
Q11.	A continuous beam $A B C$, with support A as fixed support and C is a roller support. If member $A B$ is of length 8 m and carries a UDL of $30 \mathrm{kN} / \mathrm{m}$ and member $B C$ is of length 4 m and carries a UDL of $20 \mathrm{kN} / \mathrm{m}$. What will be the distribution factor for member CB?
Option A:	0.67

Option B:	0.25
Option C:	0.5
Option D:	1
Q12.	Find Degree of kinematical indeterminacy of following Structure
Option A:	11
Option B:	15
Option C:	9
Option D:	10
Q13.	In flexibility method of analysis of Rigid jointed plane frame what we must know from the following options
Option A:	Degree of kinematical Indeterminacy
Option B:	Degree of statically Indeterminacy
Option C:	Sway or non-Sway
Option D:	Symmetrical or Un symmetrical Structure
Q14.	How many possible internal forces are developed in two hinged Arches?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q15.	In Moment distribution method, if the far end is hinged Stiffness factor is equal to:
Option A:	3EI/L
Option B:	4EI/L
Option C:	2EI/L
Option D:	5EI/L
Q16.	When deflection due to temperature stresses is to be evaluated for a determinate frame, we apply following at free end of the frame :
Option A:	UDL
Option B:	UVL
Option C:	Unit load

Option D:	Unit deflection
Q17.	Find Degree of statically indeterminacy of following Structure
Option A:	10
Option B:	11
Option C:	15
Option D:	20
Q18.	Any Structure is said to be unstable, when:
Option A:	Degree of statically Indeterminacy is less than zero
Option B:	Degree of statically Indeterminacy is equal to zero
Option C:	Static equilibrium conditions are satisfied
Option D:	Degree of statically Indeterminacy is greater than 1
Q19.	Which of the following loads are termed as indirect loading?
Option A:	Change in Temperature
Option B:	Uniformly distributed load
Option C:	Point load
Option D:	Uniformly varying load
Q20.	If a Simple pin-jointed frame is having internal indeterminacy to one degree, what should we do to analyses it by force method
Option A:	Add one member
Option B:	Remove one member
Option C:	Add two members
Option D:	Don't add or remove members
Q21.	Theorem of least work is also known as:
Option A:	Castigliano's first theorem
Option B:	Castigliano's second theorem
Option C:	Principle of virtual work
Option D:	Betty's theorem
Q22.	For evaluation of deflections due to temperature stresses in frames which of the following properties of member are required?
Option A:	Length and depth of member
Option B:	Weight of member
Option C:	Moment of inertia

Option D:	Tensile strength of member
Q23.	ABC Two hinged parabolic arches subjected to udl W kN/m over entire span, Where A and B are supports and C is at Crown. Find the vertical reaction at A.
Option A:	$\mathrm{W} / 2$
Option B:	$\mathrm{WI} / 2$
Option C:	$\mathrm{WI} / 3$
Option D:	$\mathrm{WI} / 4$
Q24.	How many displacement components will be there in a beam, one end is hinged and other is having roller supports
Option A:	2
Option B:	1
Option C:	3
Option D:	4
Q25.	How many internal forces will be developed in a member of simple pin jointed frame (Trusses)?
Option A:	2
Option B:	1
Option C:	3
Option D:	4

Program: BE-Civil Engineering
 Curriculum Scheme: Revised 2012
 Examination: Third Year Semester V

 Course Code: CEC501 and Course Name: STRUCTURAL ANALYSIS 2

 Course Code: CEC501 and Course Name: STRUCTURAL ANALYSIS 2}

Question	Correct Option (Enter either 'A' or ' B ' or 'C' or 'D'
Q1.	C
Q2.	A
Q3.	B
Q4	C
Q5	B
Q6	C
Q7	A
Q8.	D
Q9.	B
Q10.	B
Q11.	D
Q12.	C
Q13.	B
Q14.	C
Q15.	A
Q16.	C
Q17.	B

Q18.	A
Q19.	A
Q20.	B
Q21.	B
Q22.	A
Q23.	B
Q24.	A
Q25.	B

