Paper / Subject Code: 34003 / RF & Microwave Engineering

M.E.Electronics & Telecommunication Engg. (Sem. II)(Choice Base) RF & Microwave Engineering.

(3 Hours) Total Marks: 80

- **N.B.:** (1) Question number 1 is compulsory.
 - (2) Attempt any three questions from remaining questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data wherever necessary and indicate the same.
- Q.1 Write a short note on following:

[20]

- (a) Hybrid MICs versus Monolithic MICs.
- (b) Noise correlation matrix.
- (c) Field Surveys.
- (d) Coupled Lines.
- Q.2 (a) The s parameters for the HP HFET-102 FET at 2 GHZ with a bias voltage V_{gs} =0 [10] are given as follows (Z_0 =50 Ω)

$$S_{11} = 0.894 \angle -60.6^{\circ}$$

 $S_{21} = 3.122 \angle 123.6^{\circ}$

 S_{12} = 0.020 \angle 62.4°

 $S_{22} = 0.781 \angle -27.6^{\circ}$

Determine the stability of this transistor by K- delta test and plot the stability circles on smith chart.

- (b) Explain nonlinear measurements of microwave circuits with reference to load and [10] source pull.
- Q.3 (a) Draw and explain in detail Single-Ended Diode Mixer. [10]
 - (b) How is Vector Network Analyzer used to measure periodic large signal waveform [10] with all harmonics.
- Q.4 (a) For a load impedance $Z_L = 60 j80 \Omega$, design single-stub (short circuit) shunt [10] tuning networks to match this load to a 50 Ω line. Assuming that the load is matched at 2 GHz.
 - (b) What is phase noise in oscillators? Give a mathematical analysis of phase noise. [10]
- Q.5 Design an amplifier to have a gain of 11 dB at 4.0 GHz. Plot constant-gain circle [20] for $G_S = 2$ and 3 dB, and $G_L = 0$ and 1 dB. Calculate the input and output reflection coefficients and overall amplifier gain from 3 to 5 GHz. The transistor has the following scattering parameters ($Z0 = 50 \Omega$):

f(GHz)	S_{10}	S_{12}	S_{21}	S_{22}
	0.80∠ - 90°	0	2.8∠100°	0.66∠ - 50°
100 40 00 00 00 00 00 00 00 00 00 00 00 0	0.75 ∠−120°	0	2.5∠80°	0.60 ∠-70°
555	0.71∠ -140°	0	2.3∠60°	0.58∠−85°

- Q.6 (a) Show that the reflection coefficient is larger than 1 for a load of negative (10) resistance. Justify you answer using I2R relation.
 - (b) Write a short note on Dielectric Resonator Oscillator [10]
