Paper / Subject Code: 58803 / Advanced Thermodynamics.

Total Marks: 80

1T02011 - M.E.Chemical Engg. (Sem. I)(Choice Base) / 58803 - Advanced Thermodynamics.

(3 Hours)

N.B.:	1. Question No.1.iscompulsory.		
	2. Attempt any three questions out of the remaining five questions.		
	3. Assume suitable data wherever required.		
	4. Figures to the right indicates full marks.	2,42,6	
	2	10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
1.	a. Define fugacity coefficient and discuss its role to real and ideal gas mixtures.	[5]	
	b. State Henry's law and show that the Raoult's law is a special case of the Henry'	s law. [5]	
	c. Discuss the Scatchard-Hildebrand theory	[5]	
	d. Explain Lewis/Randall rule and its application	[5]	
2.	a. The excess Gibbs free energy for the system chloroform (1) and ethanol (2) at 5	5°C	
	is well represented by $\frac{G^E}{RT} = (1.42x_1 + 0.59x_2)x_1x_2$. The vapour pressures of		
	chloroform and ethanol at 55°C are 82.37 and 37.31 kPa respectively. Calculate total pressure and y_1 at 55°C and at $x_1 = 0.25$.	e the [12]	
	b. A stream of nitrogen flowing at the rate of 2 kg/s and a stream of hydrogen flow at the rate of 0.5 kg/s mix adiabatically in a steady flow process. If the gases are assumed to be ideal, what is the rate of entropy increase as a result of the process.	e	
		[8]	
3.	a. Develop a general equation to calculate $\ln \hat{\phi_i}$ values from compressibility-factors	r data. [8]	
	b. Derive an expression for the fugacity coefficient of a gas obeying the equation state $P(V-b) = RT$ and estimate the fugacity of ammonia at 10 bar and 298 K, given that $b = m^3/mol$		
4.	a. The molar volume of binary liquid mixture is given by:		
	$\mathbf{V} = 9 \times 10^{-3} \mathbf{x}_1 + 50 \times 10^{-3} \mathbf{x}_2 + \mathbf{x}_1 \mathbf{x}_2 (6 \times 10^{-3} \mathbf{x}_1 + 9 \times 10^{-3} \mathbf{x}_2)$		
	Obtain expression for $\overline{V_1}$ and $\overline{V_2}$ and show that they satisfy the Gibbs-Duhem equation.	[12]	
	b. Distinguish between the bubble point and dew-point temperature. Why does the boiling point diagram at a higher pressure lie above that at a lower pressure?	ie [8]	
5.	a. For real solution, express entropy change of mixing in terms of activity of the components in solution	[5]	
	b. Explain quasi-chemical theory (UNIQUAC) of liquid mixtures to solutions containing molecules of different sizes.	[7]	
1, 6, 6	5 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

Paper / Subject Code: 58803 / Advanced Thermodynamics.

- c. For a binary solution at constant temperature show that $\int_{2}^{1} \ln \frac{\gamma_{1}}{\gamma_{2}} = 0$ [8]
- 6. Write short notes on any four:

[20]

- a. Van Laar equation
- b. Flory-Huggins theory
- c. UNIFAC method
- d. Fugacity of pure liquid
- e. Maxwell relations.

59540 Page **2** of **2**