(Hours 3) [Total Marks: 80] | | • | Question No. 1 is compulsory. Attempt any three questions from the remaining. Assumption made should be clearly stated. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |-----|---|---|---------------------------------------| | | • | Design Data Book by PSG, Mahadevan, Kale & Khandare are permitted to use. | 200 | | Q.1 | | Answer any four | 2 2 2
2 2 2 | | | (a) | Draw flow chart for design methodology and explain with example. | 5 | | | (b) | What is mean by 6 X 37 rope in hoisting mechanism, elaborate with neat sketch. | 55 | | | (c) | List different types of piston rings and their functions. | 5 | | | (d) | Draw a neat sketch of centrifugal pump and explain its principle of working. | 5 | | | (e) | List the various laws of speed range distribution, explain arithmetic progression law with example. | 5 | | Q.2 | (a) | What is cavitation in centrifugal pump? How to avoid it. | 5 | | | (b) | For the specification of an EOT Crane, Application - Class II Load to be Lifted - 100 KN Hoisting speed - 10 m/min Maximum Lift - 5 m | | | | | i. Design a 6 X 37 type of rope and find its life. | 8 | | | | ii. Design hook and check it at most critical cross section. | 8 | | | 27 | iii. Select suitable motor for hoisting. | 4 | | Q.3 | (a) | State the advantages of multi fall pulley systems. | 4 | | | (b) | Belt conveyor system is to be designed for the following specifications: Material conveyed up: Coal Capacity: 200 TPH Lump size: 80mm Horizontal distance: 20m Vertical distance: 3m Troughing angle: 15 degree | | | | | i. Design conveyor belt. | 8 | | | | ii. Select suitable motor for conveyor. | 4 | | | | iii. Design the upper roller and bottom roller. | 4 | | | 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | TURN OVER | | 2 | Q.4 | | Petrol Engine to develop 40 KW at a speed of 1000rpm by making suitable assumption and neat sketches. Assume Compression Ratio as 7. | 12 S | |--|--|---|------| | | | i. Find the standard bore and length of a cylinder. | 5 | | | | ii. Calculate the design pressure considering explosion ratio as 3.25 and FOS as 1.3. | 5 | | | | iii. Design connecting rod and check it for bending. | 16 | | | | | 7 | | Q.5 | (a) | It is required to design a 2 X 2 machine tool gear box with following specification. $N_{min} = 100 \text{rpm}$, $N_{motor} = 960 \text{ rpm}$, GP ratio = 1.26 | 10 | | | | i. Draw structural diagrams, | | | | | ii. Draw ray diagram and speed chart, | | | | | iii. Find the number of teeth of each gear. | | | | (b) | A centrifugal pump is required to design for the total manometric head of 20 m and discharge of 900LPM of water at room temperature. i) Find the inlet and outlet diameter of an Impeller of the centrifugal pump. (Draw neat sketch of impeller and assume D ₂ = 2D ₁) | 6 | | | | ii) Find the inlet and outlet diameter of pipes. | 4 | | Q.6 | 200 | A Gear Pump required to deliver 75LPM of SAE20 oil at a pressure of 120 bar. By making suitable assumption, i. Select suitable standard Motor. | 3 | | é | 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ii. Select suitable flexible bush pin coupling. | 3 | | 800
800
800
800
800
800
800
800
800
800 | | iii. Design gear and check for bending failure. | 10 | | | 285
200 | iv. Design casing of the gear pump. | 4 | | | | | | | 200 | 07070 | X &Y &Y ,U ,XY ,X ,XY ,XY ,XY ,XY ,XY , | |