Paper / Subject Code: 41003 / Operating Systems

1T01224 - S.E.(INFORMATION TECHNOLOGY) (Sem IV) (Choice Based) / 41003 - OPERATING SYSTEMS (3 hours) [80 marks]

NOTE: Question No 1 is compulsory. Attempt any three questions from remaining. Assume suitable data if necessary.

Draw neat labelled diagrams wherever needed.

- Q.1. a) Explain the two main categories of services and functions of operating system. **10M** Compare and contrast them.
 - b) What is context-switch? Describe the actions taken by a kernel to context-switch between processes.
- Q.2. a) Explain the differences in how much the following scheduling algorithms discriminate in favor of short processes:
 - a. FCFS
 - b. RR
 - c. Multilevel feedback queues
 - b) Describe the differences among short-term, medium-term, and long-term scheduling. 10M
- Q.3. a) Explain the timestamp based protocols to ensure serializability with the help of **10M** example.
 - b) Consider the following set of processes, with the length of the CPU burst given in milli seconds. The processes are assumed to have arrived in order P₁, P₂, P₃, P₄,P₅ all at time 0.

<u>Process</u>	Burst Time	Priority
\mathbf{P}_1		3,00
P_2	V 5 5 8 1 5 5 5	
P_3		3
P ₄		33343
\mathbf{P}_{5}	7758 5 7751	50 50 20 S

Calculate the average turnaround time and maximum waiting time for pre-emptive priority scheduling algorithm.

Q.4. a) Compare and contrast paging and segmentation.

- 10M 4 10M
- b) What is address translation? Consider a logical address space of 32 pages with 1,024 words per page, mapped onto a physical memory of 16 frames.
 - a. How many bits are required in. the logical address?
 - b. How many bits are required in the physical address?
- Q.5 a) Describe how the Swap () instruction can be used to provide mutual exclusion that satisfies the bounded-waiting requirement.
 - b) What is deadlock? What are the essential conditions for deadlock to occur?
- Q.6. Write Short Notes on: (Any four)

20M

- a) Linked Allocation.
- b) Memory segmentation
- c) Deadlock detection.
- d) Translation Lookaside Buffer
- e) Open() and Close () operations.
- f) Page replacement algorithms
