Paper / Subject Code: 40604 / Electromagnetic Field and Wave Theory

Q.P.Code: 38366

(10)

- S.E.(ELECTRICAL)(Sem IV) (Choice Based) / 40604 - ELECTROMAGNATIC FIELD & WAVE THEORY Duration: 3Hrs Marks: 80

Note: (1) Question No:1 is compulsory

(e) Enlist five properties of electromagnetic wave.

(2) Attempt any three question from the remaining questions.

- Q1. Solve any four from the remaining question.
 (a) State and explain Biot-Savart law.
 (b) Explain current density and continuity equation.
 (c) Convert P (10,π/6,π/3) in cylindrical co-ordinates.
 (d) Justify the statement "Divergence of a curl of a quantity is zero".

Q2. (a) Evaluate both sides of divergence theorem for $D = x^2 a_x + y^2 a_y + z^2 a_z$ over the cube 0 < x, y, z < 1.

- (b) Two uniform line charges of density 8.854nC/m are located in a plane z=0 at y =±6m. (10) Find the E field at a point P (0, 0, 6).
- Q3. (a) Derive Maxwell's equation in integral and point form for time varying field. (10)
 - (b) Derive the electric field intensity due to a infinite line charge. (10)
- Q4. (a) Derive the Poisson's and Laplace equation. In Cartesian co-ordinates a potential is a function of x only. At X = -20cm, V=25V and $E = -1.5 \times 10^3$ a_x V/m throughout the region. Find V at X = 3 cm.
 - (b) A charge distribution in free space has $\rho_v = 2 \text{ r nC/m}^3$ in spherical co-ordinates, for 0<r<10 m and zero otherwise. Determine **E** at r = 2m and r = 12m.
- Q5. (a) Given that $\mathbf{H} = \mathbf{H}_{\mathbf{m}} e^{j(\omega t + \beta z)} \mathbf{a}_{\mathbf{x}} (A/m)$ in free space, Find \mathbf{E} . (10)
 - (b) A dielectric free space interface has the equation 3X + 2Y + Z = 12m. The origin side of the interface has $\epsilon_{r1} = 3$ and $\mathbf{E_1} = 2\mathbf{a_x} + 5\mathbf{a_z}$ (V/m). Find $\mathbf{E_2}$. (10)
- **Q6.** (a) Transform given vector A in to cylindrical system $\mathbf{A} = y\mathbf{a_x} + x\mathbf{a_y} + \frac{x^2}{\sqrt{x^2 + y^2}}\mathbf{a_z}$. (10)
 - (b) Starting from Maxwell equation obtain wave equation for the field E and H for free space. (10)
