1T00525 - T.E.(CHEMICAL)(Sem V) (Choice Based) / 31704 - Chemical Reaction Enginering-I

Time 3 hours 80 Marks

- N.B. (1) Question No.1 is compulsory.
 - (2) Attempt any three questions.
 - (3) Assume suitable data wherever necessary with proper justification
- Q1 a. The half life periods for decomposition of PH₃ for different initial pressures are (05) given below:

P,torr	707	79	37.5
t _{1/2} , min	84	84	84

Find out the order of reaction.

Q1 b. Derive Performace Equation of PFR?

- (05)
- Q1 c. The rate constants of a certain reaction are 1.6×10^{-3} and 1.625×10^{-2} s⁻¹ at 10^{0} C (05) and 30^{0} C. Calculate the activation energy.
- Q1 d. Substance A in liquid reacts to produce R and S as follows. (05)

 $A \rightarrow R$ (first order)

 $A \rightarrow S$ (first order)

A feed (C_{A0} =2, C_{R0} =0, C_{S0} =0) enters two mixed flow reactors in series (τ_1 =2.5 min, τ_2 =5 min) Knowing the composition in the first reactor (C_{A1} =0.8, C_{R1} =0.8, C_{S1} =0.4). Find the composition leaving the second reactor.

Q2 a. The reaction between H₂(g) and I (gas) to produce HI (gas) proceeds with a rate (12) $\frac{1}{2} \frac{d[HI]}{dt} = k[H_2][I]^2$

Suggest a two step mechanism which is consistent with this rate.

Q2 b. The decomposition of NH₃ on tunsgsten wire at 856^oC yielded the following (08) results.

$$2NH_3 \rightarrow N_2 + 3H_2$$

Using integral analysis method determine the order of reaction and find the rate constant in terms of moles, liters etc as appropriate

t, sec	0	200	400	600	1000
P (mm Hg)	206	228	250	273	318

59004 Page **1** of **3**

Q3 a. Sucrose is hydrolysed at room temperature by the catalytic action of the enzyme (12) as follows:

Sucrose → products

Following kinetic data were obtained in a batch reactor by starting a run with a sucrose concentration $C_{AO}=1$ mol/lt and ad enzyme concentration $C_{EO}=0.01$ mol/lt. Check with integral analysis whether these data can reasonably fit a kinetic equation of type. Evaluate constants k and M

$$-r_A = \frac{k C_A C_{EO}}{C_A + M}$$

M: Michaleis Constant

Time,	1	2	3	4,50)5 ₀ 0	6		8	9	10	71000
(h)			9	VQ 10	37.6						30, 20
C _A	0.84	0.68	0.53	0.38	0.27	0.16	0.09	0.040.	0.018	0.006	0.0025
(mol/lt)		Á	STORY OF	200	10 m	16 E.O.					C. S. T.

- Q3 b. Calculate the first order rate constant for the disappearance of A as per the gas (08) phase reaction A→1.6R if the volume of reaction mixture, starting with pure A ,increases by 50% in 4 minutes. The total pressure of the system remains constant at 1.2 atm and the temperature is 25°C
- Q4 a. A homogeneous gas phase reaction A→ 3R follows second order kinetics. Pure
 A at 5 atm and 350°C at a fed rate of 4 m3/hr is fed to a experimental reactor of
 3 cm ID and 2.5 m long gave 60% conversion of A. A commercial plant is to
 treat 320m3/hr of feed having 50% A, 50% inert at 25 atm and 350°C to obtain
 80% conversion. How many 2.5 m long of 3cm ID pipes are required?
 Should be pipe lengths of 2 m each be arranged in parallel or in series? Justify
- Q4 b. A first order reaction is carried out in a single CSTR results in 80% conversion (06) of reactant A. It is proposed to put another similar CSTR in series with the first one. How will this addition affect conversion of reactant?
- Q5 a. The irreversible gas phase reaction A+B→C is to be carried out at 10 atm and (14) 227° C. in a reactor chain consists of A MFR and PFR. It is required to process 1 lt of feed per second. The feed contains 41 mole% A, 41 mole% B and 18 mole% inerts by volume. The rate of reaction in mol/(l.min) as a function of conversion is as follows.

59004 Page **2** of **3**

-r _A mol /lt.s	0.2	0.0167	0.00488	0.00286	0.00204
X_{A}	0	0.1	0.4	0.7	0.9

Calculate size of MFR and PFR required to achieve $X_{A1} = 0.47$ as intermediate conversion (from reactor 1) and $X_{A2} = 0.8$ as final conversion. Suggest best arrangement.

- Q5 b. For the irreversible first order series reaction A→R→S the values of rate (06) constants k₁ and k₂ are 0.17min⁻¹ and 0.11 min⁻¹ respectively for reaction 1 and 2. i) Calculate the time at which the concentration of R is maximum and ii) maximum concentration of R
- Q6 For the elementary liquid phase reversible reaction (20)

$$A \Longrightarrow B$$

Construct a plot of equilibrium conversion as a function of temperature and from this plot determine the adiabatic equilibrium temperature and conversion when pure A at a temperature of 27°C (300 K) is fed to reactor.

$$\Delta H_{fA}^{\circ} = -40000 \ cal/mol$$
 $\Delta H_{fB}^{\circ} = -60000 \ cal/mol$

$$C_{pA} = 50 \frac{cat}{mol.K}$$
 $C_{pR} = 50 \frac{cat}{mol.K}$, K=100000 @298 K