Paper / Subject Code: 31703 / Heat Transfer Operations (HTO)

Maximum Marks: 80

1T00525 - T.E.(CHEMICAL)(Sem V) (Choice Based) / 31703 - Heat Transfer Operations (HTO)

(3 hours)

N.B			
1. Qu	estic	on No. 1 is compulsory.	320
2. Atte	emp	t any three out of remaining four questions.	
3. Ma	ke S	uitable Assumptions if necessary and state them clearly.	
4. Fig	ures	to the right indicate marks.	3
5. Illu	strat	e answers with sketches wherever required.	2007 2007
Q1	a) b) c) d)	Derive formula to calculate Critical thickness of insulation for a cylinder. Write note on ''Boiling point elevation in Evaporation''. An ice box of inner dimensions 1m x 0.7 m x 0.6 m has a 6.5 cm thick layer of thermocol on it as insulation. It contains 12 kg of ice. If the outer surface temperature of the box is 20 0 C, calculate the time required for the ice to melt. Latent heat of ice to water is 3350 KJ/kg ice. The thermal conductivity of the insulation layer is 0.0355 W/m 0 C. Assume that this layer virtually offers all the heat transfer resistance. State any other assumption you make. A person is found dead at 5 pm in a room whose temperature is 20 0 C. The temperature of the body is measured to be 25 0 C when found, and the heat transfer coefficient is estimated to be 8 W/m² K. Modelling the body as a 30 cm diameter, 1.7 m long cylinder, estimate the time of death of that person. k = 0.617 W/m 0 C, ρ = 996kg/m³, Cp = 4178J/kg 0 C. Solve using lumped parameter system.	05 05 05
Q2	a) (A 100mm thick brick wall is coated with 40mm gypsum plaster. To reduce heat transfer by 80% rock-wool insulation is provided. Find the thickness of Rockwool. Data: k_{Brick} =0.7W/m K, k_{gyp} =0.48 W/m K and $k_{r.wool}$ =0.065 W/m K.	08
	b)	A solid steel ball having 50mm diameter at 723K is quenched to 363K.Find the time taken by the centre of the ball to reach 423K.data: $h=11.5W/m^2K$. $\rho=8000kg/m^3$, $Cp=420$ J/kg K.	08
	c)	Derive an expression to calculate the efficiency of adiabatic tip type and infinitely long type of fins. You need not derive formulae for Q and can directly use it as well.	04
Q3	a)	Air at a temperature of 523K flows over a flat plate 0.3mwide, 1m long, at a velocity 8m/s . If the plate temperature is 351K, find the rate of heat transfer to the plate. Data at mean temp.: $k=0.0364\text{W/m}$ K. Npr=0.69. Kinematic viscosity= $0.0004\text{m}^2/\text{s}$.	10
	b)	A 20 mm ϕ horizontal heater is maintained at a surface temperature of 313 K and submerged in water at 298 K. Estimate the heat loss/ unit length of heater by natural convection.	10
59450	330	Page 1 of 2	

Paper / Subject Code: 31703 / Heat Transfer Operations (HTO)

of pool boiling. [P=70.14 kPa] condenses on the out surface of 1.5 m tube maintained at a uniform temperature of 70^{0} C. tion, Calculate the local heat transfer coefficient at the $\rho = 974$ kg/m³, $\lambda = 2309$ KJ/Kg, $k_{w} = 0.666$ W/m K, μ	05 05
of pool boiling. [P=70.14 kPa] condenses on the out surface of 1.5 m tube maintained at a uniform temperature of 70^{0} C. tion, Calculate the local heat transfer coefficient at the $\rho = 974$ kg/m³, $\lambda = 2309$ KJ/Kg, $k_{w} = 0.666$ W/m K, μ	05
tube maintained at a uniform temperature of 70^{0} C. tion, Calculate the local heat transfer coefficient at the $\rho = 974 kg/m^{3}$, $\lambda = 2309$ KJ/Kg, $k_{w} = 0.666$ W/m K, μ	10
ween Effectiveness and NTU for a co-current heat	10
of designing STHE. Give stepwise procedure with	10
Transfer in Agitated Vessels.	04
n in diameter and 150 mm long protrudes from a wall 15°C into the environment maintained at 20°C. Estimate ming that rod end is insulated. Also find fin efficiency ad of fin. I/m K, h (between rod surface and environment) = 17	06
	Transfer in Agitated Vessels. In in diameter and 150 mm long protrudes from a wall 5°C into the environment maintained at 20°C. Estimate ming that rod end is insulated. Also find fin efficiency ad of fin.

59450 Page **2** of **2**