1T00524 - S.E.(CHEMICAL)(Sem IV) (Choice Based) / 40301 - APPLIED MATHEMATICS - IV

	[Time: Three Hours]	arks:80]
N.B.:	(1) Question No 1 is compulsory	
	(2) Attempt any three questions out of the remaining five questions	
	(3) Non Programmable calculator is allowed	
Q.1)		
a)	Find the value of the integral $\int_0^{1+i} (x-y+ix^2)dz$ along the straight line from $z=1+i$.	z=0 to [5]
b)		[5]
c) d)	Find the Fourier transforms of $f(x)=1$, $ x < k$; 0 for $ x > k$) Express $f(x)=x^4-8x^3+18x^2-10x$. Find also the function whose first difference given function.	[5] is the [5]
Q.2)		
,	Expand $f(x) = lx - x^2$, $0 < x < l$ in a half range sine series Using the method of Lagrange's multipliers solve the following NLPP Optimiz $z=6x_1+8x_2-x_1^2-x_2^2$ subject to $4x_1+3x_2=16$, $3x_1+5x_2=15$, $x_1,x_2 \ge 0$	[6] e [6]
c)	Expand $f(x) = \frac{2}{(z-1)(z-2)}$ about z=0 indicating the region of convergence.	[8]
Q.3)		
a)	If $f(5)=12$, $f(6)=13$, $f(9)=14$ and $f(11)=16$, find $f(10)$ using Lagrange's Interpolation	ion [6]
b)	Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that y=P ₀ cospt,(P ₀ is	
,	constant) when x=L and y=0 when x=0	[6]
c)	Use the Kuhn Tucker conditions to solve the following NLPP Maximize $z=10x_1+10x_2-x_1^2-x_2^2$	[8]
	subject to $x_1+x_2 \le 8$, - $x_1+x_2 \le 5$, $x_1,x_2 \ge 0$	
Q4)		
3336	Find Half range cosine series for f(x)=x , 0 <x<2< td=""><td>[6]</td></x<2<>	[6]
b)	Evaluate the integral using Cauchy's Integral formula $\int_C \frac{e^{2z}}{(z-a)^4} dz$ where C is to simple $ z = 2$	
2 2 2 c)	circle $ z = 2$ A bar with insulated sides is initially at temperature 0° C throughout. The en	[6] d x=0
	is kept at 0° C and the heat is suddenly applied so that $\frac{\partial u}{\partial x}$ =10 at x=L for all the	

56939 Page **1** of **2**

Find the temperature function u(x,t).

[8]

Q5)

- a) Find f(4.4) for which f(0)=12, f(2)=7, f(4)=6, f(6)=7, f(8)=13, f(10)=32, f(12)=77 [6]
- b) Find the complex form of the Fourier series for $f(x) = e^{2x}$ in (0,2)
- c) The steady state temperature distribution in a thin plate bounded by the lines x=0,x=a,y=0 and $y=\infty$ governed by the partial differential equation $U_{xx}+U_{yy}=0$. Obtain the steady state temperature distribution under the conditions:

[6]

$$U(0,y)=U(a,y)=U(x,\infty)=0$$
 and $U(x,0)=x$, $0 \le x \le \frac{a}{2}$, [8]
= $a-x$, $\frac{a}{2} \le x \le a$.

Q6)

- a) solve $\frac{\partial z}{\partial x} 2\frac{\partial z}{\partial y} = z$ where $z(x, 0) = 3e^{-5x} + 2e^{-3x}$ using method of separation of variable
- b) Evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta.$ [6]
- c) Use Newton's Divided Difference formula to find the polynomial of the lowest degree which assumes the following values: Also find f'(2) and f''(2) [8]

X	-155	30.50	2	3
f(x)	-21	15 6	12	3,000

.

XXXX