Paper / Subject Code: 52509 / Modelling, Simulation & Optimization (MSO)

1T00518 - B.E. (Chemical) (REV. -2012)(CBSGS) SEMESTER - VIII / 52509 - Modelling, Simulation & Optimization

(3 Hours) (Total Marks: 80)

N.B. 1) Question No.1 is compulsory

- 2) Answer any three out of five question
- 3) Assume suitable data wherever necessary and state them clearly
- 4) Figure to the right indicate full marks

Q.1). Attempt any four

		1 6/ 6/ 6/ 2/ 25
a) Explain types of flowsheet simulation		[05]
b) Derive the Fenske's equation for distillation column		[05]
c) Develop the mass balances for the Mixer unit, Splitter unit and Reactor		
d) List out various methods of optimization and explain in brief		
e) Model a non-ideal flash column?		[05]

Q.2) Calculate the bubble point temperature in flash column for the mixture with components, flowrates, boiling points & Antoine coefficients given in the following table:- Total Pressure is 1 bar, For Antoine equation P is in mmHg, T is in K where 99% of Benzene is recovered in the overhead and 99.5% of xylene to be recovered in bottom. [20]

Component	f (mole/hr)	Boiling Point		B	C
Benzene	30	353	15.9008	2788.51	-52.34
Toluene	50	383	16.0137	3096.52	-53.67
O-xylene	40	418	16.1156	3395.57	-59.44

Q.3.a) Derive the Kremser equation for absorption column?

[10]

Q.3.b) Using Newton's method along with Armijo line search method to solve following eqn

[10]

$$f_1 = 2x_1^2 + x_2^2 - 6 = 0$$

$$f_2 = x_1 + 2x_2 - 3.5 = 0$$

Q.4.a) Find the optimal solution for the following equations using the Kuhn Tucker method [10]

$$Min x^2$$

Subjected to
$$-a \le x \le a$$

where a>0

[10]

Q.4.b) Find the tear stream for the given flowsheet

Q.5) Feed streams with pure species A and B are mixed with recycle stream enter CSTR where the following reaction takes place: $A + B \rightarrow C$

$$C+B \to P+E$$

$$P+C \to G$$

here C is intermediate, P is the main product, E is bi product and G is the oily waste. The plant consist of a reactor, a heat exchanger to cool reactor effluent, a decanter to separate waste product from G from reactants and other products and a distillation column to separate product P. Due to formation of azeotrope some of product (equivalent to 10 wt% of mass flow rate of component E) is retained in the column bottom most of the bottom product is recycled to reactor and rest is purged. Construct a William otto flowsheet and develop the process equation without energy balance. [20]

Q.6) Consider the mixture of 40 mol% methanol, 20 mol% propanol and 40 mol% acetone perform **TP** Flash calculation at 1 atm and 343 K (70 °C). The activity coefficients are given by [20]

$$\begin{split} &\ln \gamma_1 = -0.0753x_2^2 + 0.6495x_3^2 + 0.0172x_2x_3 \\ &\ln \gamma_2 = -0.0753x_1^2 + 0.557x_3^2 - 0.1678x_1x_3 \\ &\ln \gamma_3 = 0.6495x_1^2 + 0.557x_2^2 + 1.2818x_2x_1 \end{split}$$

Using the Antoine Equation

$$\ln P_i^0 = A_i^0 - \frac{B_i^0}{(C_i^0 + T)}$$

where P_i^0 is in mmhg and T is in K

Components	A STATE OF SER	B	С
Methanol	18.5874	3626.55	-34.29
Propanol	17.5439	3166.38	-80.15
Acetone	16.6513	2940.46	-35.93

Find the mole compositions of both the phases. Start with the initial guess of V/F = 0.85?

<u>_____</u>