## Paper / Subject Code: 30105 / MASS TRANSFER OPERATIONS - I

1T00515 - T.E.(CHEMICAL)(Sem V) (CBSGS) / 30105 - MASS TRANSFER OPERATIONS - I Q.P.Code: 21969

[3 Hours] [Total Marks: 80]

# Instructions to the candidates if any:-

- 1. Question No 1 is compulsory
- Attempt any three questions from the remaining five questions
- 3. Assume suitable data wherever necessary
- 4. Figures to the right indicates full marks

### Q. No. 1

| a. | Explain Fick's first law of diffusion.                    | (05) |
|----|-----------------------------------------------------------|------|
| b. | Discuss different types of packings used in packed towers | (05) |
| c. | Write a short note on ideal solutions                     | (05) |
| d. | Explain the concept of adiabatic saturation.              | (05) |

### Q. No. 2

- a. Derive the steady state flux equation for gas A diffusing in stagnant gas B. and hence write down the steady state flux equation for liquid A diffusing in stagnant B (08)
- b. In a wetted wall column where ammonia was stripped from an ammonia-water solution into an air stream, the overall liquid mass transfer coefficient  $K_L$  was  $0.0875 \frac{kmole}{hr \, m^2 \left(\frac{kmole}{m^3}\right)}$ . At a point in the column, the concentration of ammonia in water was  $0.3 \, kmole/m^3$  and partial pressure of ammonia in gas stream was  $0.06 \, atm$ . For dilute solution of ammonia in water, the equilibrium relationship is  $P_A = 0.25 \, C_A$ , where  $P_A$  is in atm and  $C_A$  is in  $kmole/m^3$ . If the gas phase resistance is  $70 \, \%$  of the total resistance, calculate
  - a) Individual mass transfer coefficients
  - b) Interfacial compositions of ammonia. (12)

### Q. No. 3

- a. For mass transfer to a confined fluid, explain the concept of local mass transfer coefficient (05)
- **b.** Explain surface renewal theory for mass transfer.. (05)
- c. It is desired to dry a certain material of fiber board in sheets of  $0.131~m \times 0.162~m \times 0.071~m$  from 58~% to 5~% moisture content (wet basis). Initial rate of drying at constant rate period was  $8.9~kg/m^2h$ . The critical moisture content was 24.9~% and the equilibrium moisture content was 1~%. The fiber board is to be dried from one side only and has bone dry density of  $210~kg/m^3$ . Determine time required for drying. Falling rate may be assumed linear. (10)

Q.P.Code: 21969

#### Q. No. 4

- a. In a dilute concentration region, equilibrium data for  $SO_2$  distributed between air and water can be approximated by:  $P_A=25x_A$  ( $P_A$  is partial pressure of  $SO_2$  in air in atm. and  $x_A$  is the mole fraction of  $SO_2$  in water). For absorption column operating at 10~atm.., the bulk vapour and liquid concentrations at one point in the column are  $y_A=0.01$  and  $x_A=0.05$ . The individual mass transfer coefficients,  $K_x=10~kmole/m^2h$  and  $K_y=8~kmole/m^2h$ . Find:
  - i. Overall mass transfer coefficient  $K_x'$
  - ii. Determine interfacial compositions  $x_{Ai}$  and  $y_{Ai}$
  - iii. Calculate molar flux  $N_A$ . (10)
- b. Discuss the typical rate of drying curve (05)
- c. Derive equation for operating line for counter current absorption operation (05)

### Q. No. 5

- a. Discuss the theory of wet bulb temperature (04)
- **b.** Write a short note on natural draft cooling towers (04)
- c. An acetone-air mixture containing 0.015 mole fraction acetone has the mole fraction reduced to 1% of this value by counter current absorption with pure water in a packed tower. The gas flow rate is  $1 kg/m^2s$  and the water entering is at a rate of  $1.6 kg/m^2s$ . For this system Henry's law holds and the equilibrium relationship is given as y = 1.75x where y is mole fraction of acetone in air in equilibrium with mole fraction x in the liquid. How many overall gas transfer units are required?

### Q. No. 6

Write Short Note on the following [Any four] [20]

- a. Requirements of Solvent for absorption
- b. Mass Transfer Coefficients
- c. Cooling Towers
- d. Tray Towers Vs Packed Towers
- e. Diffusion through porous solids

\*\*\*\*\*\*