Paper / Subject Code: 31602 / Genetic Engineering

1T00425 - T.E.(BIOTECHNOLOGY)(Sem V) (Choice Based) / 31602 - Genetic Engineering

Tir	me: 3 Hours	Total Marks: 80	
1) Question 1 is compulsory .			200 V
2) Attempt any three questions from	n the rest.		A 49.63
3) Draw diagrams wherever applical	ble.		
	É		
1. (a) Describe the following:			10
i) Blue white selection			P. O. C. S.
ii) Sanger's sequencing method			20,00
(b) Write a note on Watson and Cric	ck model of DNA double	helix	10
2. (a) Agarobacterium tumefaciens is	a natural genetic engine	er. Justify.	10
(b) What are different ways of plas	smid purification? Expla	in rationale behind each.	10
3. (a) Give an account of different pr	romoters used in express	ion vectors. How does cho	oice of
promoters affect the efficiency	of these vectors?		10
(b) Discuss the general problems as	ssociated with the produc	ction of recombinant prote	in in E
coli.			10
4. (a) Describe with diagrams making	g of phagemids and its us	se in cloning to achieve sin	ngle
stranded DNA.			10
(b) Write features and classificatio	n of restriction endonucl	eases.	10
		V 67.45 68	
5. (a) How does PCR result in export	nential amplification of	DNA? Explain.	10
(b) What is antisense technology	? Explain with an examp	ole its usefulness in plant	
genetic engineering.			10
		37	
6. Write short note on following:			20
(a) c-DNA library			
(b) Fusion proteins			
(c) Recombinant insulin			
(d) Gene gun			
1. 4. 5. 5. 5. 4. 8. 6. 6. 8. 9. 6. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	7,9°27,9°69'		