Paper / Subject Code: 40104 / Digital Electronics

1T00324 - S.E.(BIOMEDICAL)(Sem IV) (Choice Based) / 40104 - DIGITAL ELECTRONICS

Question number 1 is compulsory arc compulsory.

Q. P. Code: 21324

[10]

[10]

(**3 Hours**)

Please check whether you have the right question paper.

(Total Marks: 80)

	2)	Attempt any three questions from the remaining five questions.	4°43°3
	3)	Figures to the right indicate full marks.	
Q.1		Solve any five questions out of six questions.	
_			
(a)		Excess-3 code is called a self-completing code, Justify.	(4)
(b)		State and prove De-Morgan's thermos.	(4)
(c)		Simplify $y = \pi M (1,3,5)$	(6) [4]
(d)		Explain hazards in combinational circuits.	[4]
(e)		Explain race around condition?	[4]
(f)		Perform following operations using two's complement method:	[4]
		i) (42) ₁₀₋ (18) ₁₀ ii) (18) ₁₀₋ (42) ₁₀	ZiOi OT
0.2	(a)	Implement a full adder using 74138, 3:8 decoder.	[10]
Q. 2	(a)	implement a full adder using 14136, 5.6 decoder.	[10]

(b) Design a 4 bit binary code to gray code converter. [10]
 Q.4 (a) Obtain a 1:32 demultiplexer using four 1:8 demultiplexers and one 1:4 [10]

Explain the operation of J-K Flip Flop using NAND gates.

Reduce using Quine McClusky's method:

- demultiplexer together.

 (b) Design a MOD 5 asynchronous UP counter using flip-flops. [10]
- Q.5 (a) Design a 2 bit magnitude comparator. [10]
 - (b) Design a BCD to seven segment converter with common cathode. [10]
- Q.6 Write short notes on any four of the following: [20]
 - (a) Shaft Position Encoding

N.B.:

1)

(b)

(a)

Q.3

- (b) Describe both of the following:
 - i) Standard and Non-Standard SOP form ii) Standard and Non-Standard POS form
- (c) Bidirectional shift register
- (d) RTL and DTL Logic families
- (e) Master-Slave Flip-Flop

(6)