Q.P. Code :24699

[Time: 3 Hours] [Marks:80]

Please check whether you have got the right question paper.

N.B: 1. Question No. 1 is compulsory.

- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data if required.
- 4. Figures to the right indicate full marks.

Q.1 a) Find voltages V₁ and V₂

b) Draw the dual of the following network.

C) Find the current in the 5 Ω resistor.

d) Write a short note on Initial conditions and its significance

05

05

05

05

Q.P. Code :24699

12

08

10

05

Q.2 a) For the graph shown, write the incidence matrix, tieset matrix and f-cutest matrix.

- b) Define with suitable examples the following:
 - i) Planar graph.
 - ii) Non-planar graph.
 - iii) Tree
 - iv) Co-tree.
- **Q.3** a) Find the current through the 8Ω resistor, using Norton's Theorem.

- **b)** Derive the maximum power theorem and derive the expression for P_{max} .
- c) In the network shown in figure, the switch is changed from position 1 to position 2 at t=0, steady condition having reached before switching. Find the values of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t=0+

Page 2 of 3

Q.P. Code :24699

10

10

10

10

10

Q.4 a) In a network shown the switch is closed at t=0. Determine i_2 (t)

Q.4 b) Determine the Y and Z parameters for the network shown in the fig.

Q.5 a) Find the Y parameters of the network shown.

- b) Define transmission parameters and find their condition of reciprocity and symmetry.
- **Q.6 a)** Realize the foster forms of the following function: 2(s+2)(s+4)

$$z(s) = \frac{2(s+2)(s+4)}{(s+1)(s+3)}$$

- b) Check wheather following polynomials are rewrite or not:-
- i) $P(s) = 2S^6 + S^5 + 13S^4 + 6S^3 + 56S^2 + 25S + 25$
- ii) $P(s) = S^8 + 5S^6 + 2S^4 + 3S^2 + 1$

Page 3 of 3