Q. P. Code: 40531

Time:3 hours Marks: 80

- N.B.:1.Question number 1 is compulsory.
 - 2. Attempt any three of remaining 5 questions.
 - 3. Figures to the right indicate full marks.
- Q1. 1. Define even and odd signals with their conditions and find even and odd (20M)components of given signals:

a)
$$x(t) = 1 + t + 3t^2 + 5t^3 + 9t^4$$
 b) $x(t) = (1 + t^3)\cos^3(10t)$

b)
$$x(t) = (1+t^3)\cos^3(10t)$$

- Explain the time shifting and differentiation property of Laplace transform.
- 3. Find the Laplace transform of unit step signal with their ROC
- 4. Find the inverse Z transform of the given signal

$$X(z) = \log\left(\frac{1}{1 - az^{-1}}\right) , |z| > |a|$$

Q2.

1. Find the Fourier transforms of given functions.

(10M)

a)
$$x(t) = \frac{d}{dt}[2te^{-2t}u(t)]$$

- a) $x(t) = \frac{d}{dt} [2te^{-2t}u(t)]$ b) $x(t) = \int_{-\infty}^{t} e^{-a\tau}u(\tau)d\tau$
- 2. Prove following properties:

(10M)

- a) Convolution property of DT periodic sequences
- b) Parseval's relationship for Fourier series
- Q3. 1. Find Laplace transform of following sawtooth pulses:

(8M)

- 2. Find inverse Laplace transform of: $X(S) = \frac{3S+4}{(S+1)(S+2)^2}$ (6M)
- 3. Derive relationship between Fourier transform and Laplace transform. (6M)

Q. P. Code: 40531

Q4. 1. Determine whether the following systems are memory less, causal, stable, (10M) invariant and linear:

a)
$$y(n) = x(n) \sum_{k=-\infty}^{\infty} \delta(n-2k)$$
 b) $y(n) = \frac{\sin[x(n)]}{x(n)}$

2. Define and prove properties of cross correlation of energy signals and find (10M)

Cross correlation of given signals: $x(n)=\{2,3,4,5\}$ and $y(n)=\{3,2,1,4\}$

Q5.

1. State following properties of Z transform:

(8M)

- a) Time shifting property
- b) Differentiation in Z-transform
- c) Time reversal
- d) Convolution in time domain
- 2. Determine the z-transforms, ROC and poles and zeros of:

(8M)

a)
$$x(n) = 2^n u(n) + 3^n u(-n-1)$$

$$b) x(n) = e^{-3n}u(n)$$

3. State and prove relationship between Z transform and DTFT.

(4M)

Q6.

1. Define and determine linear convolution of:

(6M)

$$x(t) = u(t+1)$$
 and $h(t) = u(t-2)$.

2. For a difference equation of the system is given as

(8M)

$$y(n) = 0.5y(n-1) + x(n)$$
, Determine

- a) System function b) Pole zero plot of the system function
- 3. Define standard signals used for system analysis and derive relationship (6M) between unit step and ramp function.