University of Mumbai
 Online Examination 2020

Program: BE Engineering Curriculum Scheme: R-2016
Examination: Final Year Semester VII
Course Code: ILOC $7015 \quad$ Course Name: Operations Research
Time: 1 hour
Max. Marks: 50

Question Paper Set No._04

Note: Each question is for 2 marks.

		Multiple Choice Questions (MCQ)
		ALL questions are compulsory. There are 25 questions, each question carries 2 mark.
1.	The unit of traffic intensity is:	
	a)	Poisson
	b)	Markow
	c)	Erlang
	d)	Kendall
2.	Arrival rate of telephone calls at a telephone booth is according to Poisson distribution, with an average time of 9 minutes between consecutive arrivals. The length of telephone call is exponentially distributed with a man of 3 minutes. Find the average queue length that forms from time to time	
	a)	1.5 persons
	b)	1 person
	c)	2.5 persons
	d)	12.5 persons
	In a departmental store one cashier is there to serve the customers and the customers pick up their needs by themselves. The arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming Poisson arrival rate and exponential distribution for service rate. Find average number of customers in the system.	
	a)	0.11 customers
	b)	9 customers
	c)	11 customers
	d)	0.9 customers
4.	Determine the idle time of the service facility	
	a)	1 min
	b)	2 min
	c)	3 min
	d)	0 min
	Read the given question answer the following questions 11,12 A company manufactures around 200 bikes. Depending upon the availability of raw material and other conditions, the daily production has been varying from 196 to 204 bikes. The finished bikes are transported in a specially designed three- storied lorry that can accommodate only 200 bikes, whose probability distribution and random numbers are given in the following table:	
5.		

	$\begin{aligned} & \hline \mathrm{Da} \\ & \mathrm{y} \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Ra nd om No	82	89	78	24	53	61	18	45	04	23	50	77	27	54	10
	$\begin{aligned} & \hline \text { Pro } \\ & \text { duc } \\ & \text { tio } \\ & \mathrm{n} / \mathrm{d} \\ & \text { ay } \\ & \hline \end{aligned}$	20 2 2		20			20 1	19	20 0	19 6	19	20 0	20	19 9	20	19 7
		Simulate the process to find out what will be the average number of bikes waiting in the factory														
	a) 1	1														
	b) 2	2														
	c) 3	3														
	d) 4	4														
6.	What will be the average number of empty space in the lorry															
	a) 0	0														
	b) 1	1														
	c) 2	2														
	d) 3	3														
7.	If a problem can be broken into sub-problem which are reused several times, the problem possessesproperty.															
	a)	Overlapping sub-problem														
	b) Op	Optimal substructure														
	c)	Memoization														
	d)	Greedy														
8.	Find a recurrence relation and initial conditions for $1,5,17,53,161,485 \ldots$															
	a) a_{1}	$\mathrm{a}_{\mathrm{n}}=3 \mathrm{a}_{\mathrm{n}-1}+2$ and $\mathrm{a}_{0}=0$														
	b) $\mathrm{a}^{\text {a }}$	$\mathrm{a}_{\mathrm{n}}=3 \mathrm{a}_{\mathrm{n}-1}-2$ and $\mathrm{a}_{0}=0$														
	c) $\mathrm{a}^{\text {d }}$	$a_{n}=3 a_{n-1}+2$ and $a_{0}=1$														
	d) ${ }^{\text {a }}$	$a_{n}=3 a_{n-1}-2$ and $a_{0}=1$														
9.	For which of the following problems is most suitable for Probabilistic Dynamic problem solving method?															
	a) D	Distributing medical teams to countries														
	b)	Scheduling employment levels														
	c)	Winning in Las Vegas														
	d) S	Stagecoach problem														
10.	If a two person zero sum game is converted to a Linear Programming Problem,															
	a) N	Number of variables must be two only														
	b)	There will be no objective function														
	c)	Row player represents Primal problem, Column player represent Dual problem														
	d) N	Number of constraints is two only														
11.	One of the assumption in the game theory is-															
	a)	All players act rationally and intelligently														

	b)	Winner alone acts rationally
	c)	Loser acts intelligently
	d)	Both the players believe luck
12.	In a two person zero sum game, the following does not hold correct:	
	a)	Row player is always a loser
	b)	Column Player is always a winner.
	c)	Column player always minimizes losses
	d)	If one loses, the other gains.
13.	The EOQ for the following data Annual usage $=1000$ pieces Expending cost $=$ Rs. 4 per order Cost per piece = Rs. 250 Inventory holding cost=20\% of average inventory Ordering cost $=$ Rs. 6 per order Material holding cost= Re. 1 per piece	
	a)	22
	b)	23
	c)	20
	d)	24
14.	A contractor has to supply 10,000 bearings per day to an automobile manufacturer. He finds that, when he starts production run, he can produce 25,000 bearing per day. The cost of holding a bearing in stock for a year is Rs. 2 and set up cost of a production run is Rs. 1800. How frequently should production run be made	
	a)	10.44 days
	b)	11.44 days
	c)	12 days
	d)	11 days
15.	Re-order level of an item is always	
	a)	Less than its minimum stock
	b)	Less than its maximum stock
	c)	More than its maximum stock
	d)	More than its minimum stock
16.	In the Simplex method to convert a constraint of type \leq, to equation form, we need to add what type of variable?	
	a)	surplus variable
	b)	slack variable
	c)	artificial variable
	d)	dual variable
17.	Consider the constraints for a LPP $3 \mathrm{a}+5 \mathrm{~b}=15$ and $5 \mathrm{a}+2 \mathrm{~b}=10$. Given $\mathrm{a}, \mathrm{b} \geq 0$. The number of vertex points in the feasibility convex region are?	
	a)	1
	b)	2
	c)	3
	d)	4
18.	Consider the constraints for a LPP $7 \mathrm{a}+3 \mathrm{~b} \leq 24, \mathrm{a}+2 \mathrm{~b} \leq 6$ and $\mathrm{b} \leq 6$. Given $\mathrm{a}, \mathrm{b} \geq 0$. The number of vertex points in the feasibility convex region are?	
	a)	4

	programming model are known as	
	a)	objective function
	b)	constraints
	c)	extreme points
	d)	slack variables
24.	Having more than one shipping distribution but with the same total cost is known as:	
	a)	a prohibited solution
	b)	an unequal solution
	c)	an alternative optimal solution
	d)	a transshipment solution
25.	In linear programming extreme points are:	
	a)	variables representing unused resources
	b)	variables representing an excess above a resource requirement
	c)	all the points that simultaneously satisfy all the constraints of the model
	d)	corner points on the boundary of the feasible solution space

University of Mumbai

Online Examination 2020

Program: BE Engineering
Curriculum Scheme: R-2016
Examination: Final Year Semester VII Course Code: ILOC 7015, Course Name: Operations Research
Time: 1 hour
Max. Marks: 50

Answer Keys to Question Paper Set no. 04

Enter a, b, c, or din the correct option column

Question	Correct Option	Question	Correct Option
Q. 1	c	Q. 14	a
Q. 2	a	Q. 15	c
Q. 3	b	Q. 16	b
Q. 4	d	Q. 17	a
Q. 5	c	Q. 18	a
Q. 6	a	Q. 19	b
Q. 7	a	Q. 20	d
Q. 8	c	Q. 21	a
Q. 9	c	Q. 22	d
Q. 10	c	Q. 23	b
Q. 11	a	Q. 24	c
Q. 12	a	Q. 25	d
Q. 13	c	---	---

