University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2012
Examination: Final Year Semester VII
Course Code: MEE7099 and Course Name: Operations Research

Time: 1 hour
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q6.	A linear programming problem with mixed constraints (some constraints of \leq type and some of \geq type) can be solved by which of the following methods?
Option A:	Big-M method or Two-phase method
Option B:	Dual Simplex method
Option C:	Only Big-M method
Option D:	Only Two-phase method
Q7.	In the solution of a linear programming problem by Simplex method, if during iteration, all ratios of right-hand side bi to the coefficients of entering variable a_{i} are found to be negative, it implies that the problem has
Option A:	Infeasible
Option B:	Unbounded
Option C:	Infinite
Option D:	Degeneracy
Q8.	In marking assignments, which of the following should be preferred?
Option A:	Only column having single zero
Option B:	Column having more than one zero
Option C:	Only row having single zero
Option D:	Only Row/column having single zero
Q9.	In an assignment problem involving 5 workers and 5 jobs, total number of assignments possible are Option A:
Option B:	5
Option C:	25
Option D:	15
Q10.	In assignment problem of maximization, the objective is to maximize
Option A:	Loss
Option B:	Cost
Option C:	Profit
Option D:	Production time
Q11.	When the total demand is equal to supply then the transportation problem is said to be Option D:
Option A:	Maximization
Option B:	Minimization
Option C:	Unbalanced
Option D:	Balanced
Option A:	Service factor
Option C:	Arrival factor
	Utilization factor

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q13.	At a bank teller window, customers arrive at the average rate of twenty per hour according to the poison's distribution. The bank teller spends an average of two minutes per customer to complete a service and service time is exponentially distributed. Customers who arrive from an infinite population are served first come and first served basis. What is the probability of teller to be idle?		
Option A:			0.33
Option B:			0.66
Option C:			0.1
Option D:			10
Q14.	Dynamic programming cannot be applied to find		
Option A:	Shortest route		
Option B:	Distribution of resources		
Option C:	Evaluating investment opportunities		
Option D:	Static Problems		
Q15.	Replacement theory is not applied when		
Option A:	Efficiency of which declines gradually		
Option B:	Items breaking down suddenly		
Option C:	Jobs are to be optimally sequenced		
Option D:	Items are worn out into scrap		
Q16.	Simulation theory uses		
Option A:	Vogel's Approximation method		
Option B:	MODI method		
Option C:	Bellman's Optimality Principle		
Option D:	Monte Carlo Technique		
Q17.	The simulation which uses computer graphic displays to present the consequences of change in the value of input variation in the model is called		
Option A:	Interactive simulation		
Option B:	Independent simulation		
Option C:	Dependent simulation		
Option D:	Probabilistic simulation		
Q18.	Solving a complex problem by breaking it down into a collection of simpler sub problems and solving each of those sub problems is called		
Option A:	Simplex method		
Option B:	Simulation		
Option C:	Dynamic programming		
Option D:	Sequencing		
Q19.	Calculate the value of game:		
			$3 \quad 2$
			-2 -3
			-4

University of Mumbai

Examination 2020 under cluster 4 (PCE)

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	capacity of a warehouse
Option D:	lot size corresponding to break-even analysis
Q25.	order for an item and its receipt in stock. Option A: Down time Option B:
Option C:	Lead time
Option D:	Stock time

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: Final Year Semester VII
Course Code: ILO 7015 and Course Name: Operations Research
Time: 1 hour

Question	Correct Option (Enter either ' A ' or ' B or ' C ' or ' D ')
Q1.	A
Q2.	D
Q3.	A
Q4	A
Q5	C
Q6	A
Q7	B
Q8.	D
Q9.	B
Q10.	C
Q11.	D
Q12.	C
Q13.	A
Q14.	D
Q15.	C
Q16.	D
Q17.	A
Q18.	C
Q19.	A
Q20.	B
Q21.	B
Q22.	D
Q23.	A
Q24.	B
Q25.	C

