Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Final Year Semester VII

Course Code: CE-E705 and Course Name: Prestressed Concrete

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Pre-stressed concrete is most suitable for	
Option A:	Long span structures	
Option B:	Short span structure	
Option C:	Structures carrying impact load	
Option D:	Structures subjected to earthquake loads	
Q2.	Which of the following method of prestressing is suitable for pre-tensioned	
	members	
Option A:	Freyssinet system	
Option B:	Magnel Blaton System	
Option C:	Hoyer system	
Option D:	Glifford-Udall System	
Q3.	The locus of point of application of resultant in prestressing structure is called as	
Option A:	Cable line	
Option B:	Pressure line	
Option C:	Force line	
Option D:	Tension line	
Q4.	The zone of cross section if subjected compressive load does not produce any	
	tensile stresses is called as	
Option A:	Kern point	
Option B:	Center of gravity	
Option C:	Center of mass	
Option D:	Point of load application	
Q5.	A rectangular concrete beam 250 mm wide by 300 mm deep is prestressed by a	
	force of 240 kN at a constant eccentricity. If the stress due to bending moment is $\frac{2}{3}$	
	8.6 N/mm ² what will be the eccentricity of the cable ?	
Option A:	75.7 mm	
Option B:	86.4mm	
Option C:	59.8 mm	
Option D:	90.4 mm	

Q6.	A rectangular beam of length L is prestressed by force P at slopping triangular
	cable profile with maximum eccentricity e at the center of span. The equivalent
Oution A.	load will be given by
Option A:	$w = \frac{4Pe}{r}$
Option B:	$w = \frac{Pe}{P}$
	L
Option C:	$w = \frac{4P}{2}$
Option D:	$w = \frac{4P}{2}$
	" Le
Q7.	What will be loss of stress in steel due to creep in concrete if creep coefficient is
	1.6, stress in the level of steel is 10.2 N/mm^2 and modular ratio is 6
	NOTE: use creep coefficient method
Option A:	20.42
Option B:	87.95
Option C:	97.92
Option D:	100.23
Q8.	Which of the following loss in prestressed concrete comes due to loss of moisture
Ontion A:	In the concrete ?
Option A.	Anchorage shoep
Option B:	Alicholage sleep
Option C.	Friction
Option D:	Filction
09	What will be the loss in prestress due to shrinkage (in N/mm^2) if shrinkage strain
Q9.	is 1.345 $\times 10^{-4}$ and En= 2×10^{5} ?
Option A:	27.08
Option B:	28.34
Option C:	12.45
Option D:	87.15
Q10.	Which of the following loss in prestress is very immediate?
Option A:	Anchorage slip
Option B:	Creep
Option C:	Elastic deformation
Option D:	Relaxation of steel
Q11.	In the pre cracking stage, the deflections are computed by:
Option A:	Prestressing force
Option B:	Sectional area
Option C:	Diameter
Option D:	Second moment of area

Q12.	When the loads in a concrete member are further increased than permitted, t			
	crack widths are of an order of limit?			
Option A:	0.01-0.02 mm ⁵			
Option B:	0.05-0.10 mm ⁵			
Option C:	0.03-0.05 mm ⁵			
Option D:	0.07-0.08 mm ⁵			
Q13.	The cracks appear when the tensile stresses at the soffit are equal to:			
Option A:	Modulus of elasticity			
Option B:	Modulus of rupture			
Option C:	Tension modulus			
Option D:	Reinforcement modulus			
Q14.	If the direct stresses are compressive, then the magnitude of principal stresses in			
	prestressed concrete member gets:			
Option A:	Increased			
Option B:	Decreased			
Option C:	constant			
Option D:	zero			
Q15.	A prestressed concrete beam of span 10m of rectangular section, 120mm wide &			
	300mm deep a curved cable having an eccentricity of 100mm at the centre of			
	span. Find the slope of cable of support?			
Option A:	0.08 radians			
Option B:	0.01 radians			
Option C:	0.04 radians			
Option D:	0.12 radians			
Q16.	When the shear force due to ultimate loads is less than 0.5 times shear force of			
	concrete then shear reinforcement is?			
Option A:	Provided			
Option B:	Not provided			
Option C:	Made equal			
Option D:	Made zero			
Q17.	What is maximum shear stress at support for a prestressed concrete beam (span			
	= 10 m) of a rectangular section, 120 mm wide and 300 mm deep, is axially			
	prestressed by a cable carrying an effective force of 180 kN? The beam supports			
	a total uniformly distributed load of 5 kN/m which includes the self weight of the			
	member.			
Option A:	1.05 N/mm ²			
Option B:	2.05 N/mm ²			
Option C:	0.05 N/mm ²			
Option D:	3.05 N/mm ²			

Q18.	The spacing provided for shear reinforcement is given as:	
Option A:	(A _{sv} 0.87fy/0.4b)	
Option B:	(A _{sv} 0.91fy/0.4b)	
Option C:	(A _{sv} 0.12fy/0.4b)	
Option D:	(A _{sv} 0.23fy/0.4b)	
Q19.	What should be provided in case of end zone reinforcements to prevent failure of	
	corner zones?	
Option A:	Ducts	
Option B:	Anchorages	
Option C:	Hair pin bars	
Option D:	Transverse bars	
Q20.	In case of end blocks, the steel case should be provided with bearing plates to	
	overcome	
Option A:	Overlapping	
Option B:	Compression	
Option C:	Tensioning	
Option D:	Torsion	
Q21.	The tensile stresses which tend to split the concrete are placed in the transverse	
	direction to the	
Option A:	Edge of member	
Option B:	Span of member	
Option C:	Axis of member	
Option D:	End of member	
000		
Q22.	The secondary moment is also known as	
Option A:	Parallel bending moment	
Option B:	Eccentric bending moment	
Option C:	Parasitic bending moment	
Option D:	Elliptical bending moment	
000		
Q23.	The resultant moment is a section of	
Option A:	Determinate prestressed structure	
Option B:		
Option C:	Hollow structure	
Option D:	I ransverse prestressed structure	
024		
Q24.	in statistically indeterminate prestressed concrete structures it is possible to make simple modification to	
Ontion A:	Predetermined tendon profile	
Option P:	Flongated tendon profile	
Option C:	College tenden profile	
Option D:	Pidge tendon profile	

Q25.	To develop continuity the short and straight tendons may be used over the	
Option A:	Spans	
Option B:	Ridges	
Option C:	Supports	
Option D:	Edges	

Program: BE Civil Engineering

Curriculum Scheme: Revised 2012

Examination: Final Year Semester VII

Course Code: CE-E705 and Course Name: Prestressed Concrete

Time: 1 hour

Max. Marks: 50

Question	Correct Option
	(Enter either A or B or 'C' or 'D')
Q1.	А
Q2.	С
Q3.	В
Q4	А
Q5	С
Q6	А
Q7	С
Q8.	С
Q9.	А
Q10.	А
Q11.	В
Q12.	А
Q13.	А
Q14.	A
Q15.	С
Q16.	В
Q17.	Α

Q18.	А
Q19.	С
Q20.	А
Q21.	С
Q22.	С
Q23.	В
Q24.	A
Q25.	С