University of Mumbai

Examination 2020 under cluster 4 (PCE)

> Program: BE Information Technology
> Curriculum Scheme: Rev 2012
> Examination: Final Year Semester VIII
> Course Code: ITC8044 and Course Name: Robotics

Time: 1 hour

Q NO	QUESTION (2 marks per question)	OPTIONS				Correct Answer
		A	B	C	D	
1	What type of joint is used for linear motion in robot arm?	Rotational Joint	Prismatic Joint	Twisting Joint	Revolving Joints	B
2	Which of the following is not the application of Robotics?	Industries	Military	Medicine	Hills	D
3	The Kinematic parameters of robot arm is	Өk , dk	ak, ak	Ok , dk , ak, ak	Ok, ak	C
4	By using inverse kinematics, we can find \qquad parametres	Joint parametres	link parametres	Joint and link parametres	displacement parametres	A
5	What is the function of Jacobian matrix?	Relates cartesian velocity of a manipulator with its joint velocity	Cannot be used to control a manipulator	Cannot be used to check sinrularity of a manipulator	Is used to determine the joint torques and forces	A

6	In Jacobians matrix of any dimension rows and columns equal to	The number of rows equals the number of degrees of freedom and the number of columns is equal to the number of joints of the manipulator	The number of rows equals the number of joints of the manipulator equals and the number of columns is equal to the number of degrees of freedom	The number of rows equals the number offorces acting on manipulator and the number of columns is equal to the number of degrees of freedom	The number of rows equals the number of joints of the manipulator and the number of columns is equal to Torques	A
7	The equation $\delta \mathrm{x} / \delta \mathrm{t}=\mathrm{J} \delta \mathrm{q} / \delta \mathrm{t}$ tell us that	The end effctor velocity is equal to the jacobian J multiplied by the joint angle velocity	The end effctor velocity	the joint angle velocity is equal to the jacobian J multiplied by The end effctor velocity	the joint angle velocity	A
8	What is mean by forward dynamics?	Calculation of torques equation	Calculation of motion equation if joint torques or end-effector forces are given	Calculation of motion equation	Calculation of joint torques or end-effector forces if motion variables are given	B
9	Finding joint torques given by joint angles, velocities and acceleration as input is known	Dynamics	Kinematics	Inverse kinematics	Inverse Dynamatics	D
10	If K denotes the kinetic enery,p denotes the potential energy, denotes langrangian, θi denotes joint variable of manipulator, then dynamic equation is given by	$\mathrm{d} / \mathrm{dt}(\delta \mathrm{L} / \delta \theta \mathrm{i})$ $\delta \mathrm{L} / \delta \theta \mathrm{i}=\tau$ and $\mathrm{L}=\mathrm{K}+\mathrm{P}$	$\mathrm{d} / \mathrm{dt}(\delta \mathrm{L} / \delta \theta \mathrm{i})$ $\delta \mathrm{L} / \delta \theta \mathrm{i}=\tau$ and $\mathrm{L}=\mathrm{K}-\mathrm{P}$	$\mathrm{d} / \mathrm{dt}(\delta \mathrm{L} / \delta \theta \mathrm{i})+$ $\delta \mathrm{L} / \delta \theta \mathrm{i}=\tau$ and $\mathrm{L}=\mathrm{K}+\mathrm{P}$	$\begin{aligned} & \mathrm{d} / \mathrm{dt}(\delta \mathrm{~L} / \delta \theta \mathrm{i})- \\ & +\delta \mathrm{L} / \delta \theta \mathrm{i}=\tau \\ & \text { and L=K-P } \end{aligned}$	B

11	When planning a trajectory for the three orientation angles, the resulting global motion cannot be intuitively \qquad in advance	interpolated	visualized	applied	added	B
12	A complete specification of location of the robot is called its	configuration	space	workspace	obstacles	A
13	Which of the following statement is FALSE? Robot's trajectory function can be	a polynomial function	an exponential function	a pure linear function	a linear function with teo parabolic blends put at the ends	C
14	\qquad provide a suitable solution class for satisfying symmetric boundary conditions in a point-to-point motion that imposes zero values on higher-order derivatives.	Lower-order polynomials	Higher-order polynomials	Quintic polynomial	Cubic polynomial	B
15	1) head toward goal 2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal 3) return to that closest point (by wall-following) and continue These are the steps of \qquad algorithm	BUG '0'	BUG 1	BUG 2	Tangent BUG	B
16	\qquad is the shortest distance between any point in the currently sensed environment and the goal.	dmin	dmax	dstart	dleave	D
17	Bug 1 and Bug 2 algorithms assume essentially \qquad sensing	local	tactile	global	distance	B
18	A function is \qquad if every critical point (a point where the gradient is zero) is isolated.	Navigation	Morse	Potential	Gradient Descent	B

19	There is a path from some q" RM to qgoal Qfree is called	Departability	Accessibility	Connectivity	Visibility	A
20	The free space F is represented by a collection of non-overlapping cells whose union is exactly F is called as	Exact cell decomposition	Approximate cell decomposition	Cell decomposition	Potential field	A
21	Using \qquad , we can construct an adjacency graph which can be used for both navigation of a robot and coverage.	trapezoidal cells	adjacent cells	cell	morse cell	A
22	Attractive Potential method is based on attractive potential field due to the \qquad	obstacle	goal	start point	negative gradient	B
23	Behavior-based robotics works based on	Relative Velocity Approach	Incremental planning	Reactive Control Strategy	Potential Field Approach	C
24	N -th order polynomials have \qquad maximum and minimum points.	N-1	N	N+1	2N	A
25	The Lagrange's equation is used to	derive equations of Torques	derive equations of differntial motion	derive equations of force	derive equations of motion	D

