Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Final Year Semester VII Course Code: MEDLO7031 and Course Name: Mechanical Vibrations

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	A thin circular disk of mass 2 kg and radius 20 cm is suspended at a point on the		
	circumference. The mass-moment-of-inertia about the pivot axis iskg-m^2.		
Option A:	0.12		
Option B:	0.2		
Option C:	0.5		
Option D:	1		
Q2.	A system has a mass 5 kg, and a spring of stiffness 1 kN/m. The undamped time period		
_	is seconds.		
Option A:	14.14		
Option B:	0.444		
Option C:	1.414		
Option D:	4.44		
Q3.	An automobile is found to have a natural frequency of 20 rad/s without load and 17.32		
	rad/s with load of mass 500 kg. The mass of the automobile by treating it as single		
	degree of freedom is kg.		
Option A:	1601.2		
Option B:	1058.5		
Option C:	1925.4		
Option D:	1499.6		
Q4.	A spring mass system with mass 2 kg and stiffness 3200 N/m has an initial displacement		
	of x0 = 0. The maximum initial velocity that can be given to the mass without the		
	amplitude of free vibration exceeding a value of 0.1m ism/s.		
Option A:	40		
Option B:	4		
Option C:	8		
Option D:	80		
Q5.	The natural frequency of a spring-mass system on earth is ω n. The natural frequency of		
	this system on the moon (g for moon = g for earth / 6) is		
Option A:	0.408 ωn		
Option B:	ωη		
Option C:	0.204 ωn		
Option D:	0.167 ωn		
Q6.	Longitudinal vibrations are said to occur when the particles of a body moves		
Option A:	Perpendicular to its axis		

Examination 2020 under cluster 4 (PCE)

· ·	In a circle about its axis			
Option C:	Parallel to its axis			
Option D:	About its own axis			
Q7.	In under damped vibrating system, if x1 and x2 are the successive values of the			
-	amplitude on the same side of the mean position, then the logarithmic decrement is			
	equal to			
Option A:	ln (x1 / x2)			
Option B:	(x1 / x2)			
Option C:	log (x1 / x2)			
Option D:	log (x1. x2)			
_				
Q8.	The theoretical mean position for the case of Coulomb damping is			
Option A:	is always zero			
Option B:	varies alternatively between F/k and -F/k for each half cvcle			
Option C:	is always 1			
Option D:	never exists			
•				
Q9.	In a vibrating system, if the actual damping coefficient is 40 N-s/m and critical			
	damping coefficient is 420 N-s/m, the logarithmic decrement is equal to			
Option A:	0.2			
Option B:	0.4			
Option C:	0.8			
Option D:	0.6			
Q10.	A spring mass damper system has mass, m=2 kg and spring stiffness,			
	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is			
	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be			
	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Caulomb			
Option A:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb.			
Option A:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb.			
Option A: Option B:	 k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 			
Option A: Option B: Option C:	 k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 			
Option A: Option B: Option C: Option D:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125			
Option A: Option B: Option C: Option D:	 k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Domping? 			
Option A: Option B: Option C: Option D: Q11.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1			
Option A: Option B: Option C: Option D: Q11. Option A: Option P:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1			
Option A: Option B: Option C: Option D: Q11. Option A: Option B:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D:	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below:			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is and it is in case of			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is its natural frequency, whereas in case of Coulomb damping. it is			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is 			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is 			
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D: Q12.	k=500 N/m. An initial amplitude of 1 cm is given to the mass and it is released from rest. After 5 complete cycles its amplitude is found to be 0.5 cm. Determine the friction force, assuming the damping to be purely Coulomb. 0.25 0.125 1.125 3.125 What is the value of damping ratio for the case of Coulomb Damping? Greater than 1 Invalid 1 Less than 1 Fill the correct words in the paragraph from the options given below: Envelope of viscous damping is; and it is in case of Coulomb damping. Vibrating frequency of system for viscous damping is its natural frequency, whereas in case of Coulomb damping, it is its natural frequency. (1) Less than (2) greater than (3) equal to (4) straight line (5) exponential curve (6) parabolic curve Choose the correct sequence.			

Examination 2020 under cluster 4 (PCE)

Option B:	6,4,2,3		
Option C:	5.4,1,3		
Option D:	5,6,1,2		
1			
Q13.	According to Maxwell reciprocal theorem, for a linear system, which of the		
	following is correct.		
Option A:	Aij = Aji		
Option B:	Aij < Aji		
Option C:	Aij > Aji		
Option D:	Aij ≠ Aji		
Q14.	A simply supported beam is an example of		
Option A:	Discrete system		
Option B:	Continuous system		
Option C:	Lumped system		
Option D:	Undistributed system		
Q15.	is used to find the natural frquency of the system when transverse point		
	load are acting on the beam or shaft.		
Option A:	holzers method		
Option B:	dunkerleys method		
Option C:	matrix iteration method		
Option D:	rayleigh method		
Q16.	In a body subjected to transverse vibrations, the stress induced is		
Option A:	Torsional shear stress		
Option B:	Tensile and compressive stress		
Option C:	Direct shear stress		
Option D:	Non-Linear stress		
Q17.	A weight of 50 N is suspended from a spring of stiffness 4000 N/m and is subjected to a		
	harmonic force of amplitude 60 N and frequency 37.7 rad/s. If the static displacement		
	of the spring due to the maximum applied force is 15 mm and natural frequency is 28		
	rad/s, Find the amplitude of forced motion of the weight.		
Option A:	0.01845 mm		
Option B:	18.45 mm		
Option C:	12.5 mm		
Option D:	0.0125 mm		
Q18.	A spring-mass system with mass of 10 kg stiffness 5000 N/m is subjected to a harmonic		
	force of amplitude 250 N and excitation frequency. If the static displacement of the		
	spring due to the maximum applied force is 50 mm and the maximum amplitude of the		
Ontion A:	Thass is observed to be 100 mm, find the value of excitation frequency.		
Option A:	22.30 Idu/S		
Option C:			
Option D:	100 rod/c		
Option D:			

Examination 2020 under cluster 4 (PCE)

Q19.	When shaking force is transmitted through the spring, damping becomes detrimental when the ratio of its frequency to the natural frequency is greater		
	than		
Option A:	1.414		
Option B:	0.25		
Option C:	0.5		
Option D:	1		
Q20.	A 75 kg machine is mounted on springs of stiffness $k = 1176000$ N/m with an assumed damping factor of 0.20. A 2 kg piston within the machine has a reciprocating motion with a stroke of 0.08 m and a speed of 3000 rpm. Assuming the motion of the piston to be harmonic, determine the vibratory force transmitted to the foundation.		
Option A:	5.6 cm		
Option B:	2.7 cm		
Option C:	7.5 cm		
Option D:	10.2 cm		
Q21.	An accelerometer is an instrument used to measure the of a vibrating body.		
Option A:	displacement		
Option B:	velocity		
Option C:	momentum		
Option D:	acceleration		
-			
Q22.	In FFT Spectrum Analyzer, FFT stands for		
Option A:	Frequency Fourier Transform		
Option B:	Fast Fourier Transform		
Option C:	Fast Fourier Transmission		
Option D:	Frequency Fourier Transmission		
Q23.	The frequency range of a vibrometer is generally		
Option A:	10 Hz to 50 Hz		
Option B:	1 Hz to 5 Hz		
Option C:	100 Hz to 500 Hz		
Option D:	1000 Hz to 5000 Hz		
Q24.	The geometric points in state space to which chaitic trajectories are attracted are called		
Option A:	Poincare sections		
Option B:	trajectory attractors		
Option C:	strange attractors		
Option D:	graphical attractors		
Q25.	Oscillations whose frequencies are 2, 3,,n times the forcing frequency are called		
Option A:	damped oscillations		
Option B:	subharmonic oscillations		
Option C:	superharmonic oscillations		
Option D:	free oscillations		

Examination 2020 under cluster 4 (PCE)

Program: BE Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Final Year Semester VII Course Code: MEDLO7031 and Course Name: Mechanical Vibrations

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	В
Q3.	D
Q4	В
Q5	В
Q6	С
Q7	А
Q8.	В
Q9.	D
Q10.	В
Q11.	В
Q12.	С
Q13.	А
Q14.	В
Q15.	D
Q16.	В
Q17.	В
Q18.	С
Q19.	А
Q20.	В
Q21.	D
Q22.	В
Q23.	В
Q24.	С
Q25.	С