Program: BE Electrical Engineering

Curriculum Scheme: Revised - 2016

Examination: Final Year Semester VII

Course Code: EEDLO7031 and Course Name: High Voltage Engineering (HVE)

Time: 1-hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Maximum dielectric strength obtained with pure liquids is about	
Option A:	100 kV/mm	
Option B:	10 kV/mm	
Option C:	10000 kV/mm	
Option D:	50 kV/mm	
Q2.	Conduction and breakdown in commercial liquids is affected by	
Option A:	Solid particles only.	
Option B:	Vapor or air bubbles only.	
Option C:	Solid particles, vapor or air bubbles and electrode materials.	
Option D:	Gases only.	
Q3.	The parameters that affect the breakdown strength of liquids is	
Option A:	Hydrostatic pressure and temperature	
Option B:	Dissolved impurities	
Option C:	Dielectric constant	
Option D:	Pressure, temperature, dissolved impurities, and suspended particles.	
Q4.	Long – term deterioration and breakdown occur in solid dielectrics due to	
Option A:	Thermal phenomenon	
Option B:	Surface discharges	
Option C:	Internal discharges	
Option D:	Treeing phenomenon	
Q5.	The material used for insulation that is exposed to atmosphere is	
Option A:	Ceramic and glass	
Option B:	Polyester	
Option C:	Inorganic insulation	
Option D:	Rubber and plastic	
Q6.	For HV cables insulation, the materials used are	

Option A:	Glass and ceramic	
Option B:	Silicone rubber	
Option C:	XLPE	
Option D:	Paper-oil insulation	
Q7.	Impulse current generator output wave form is	
Option A:	Un-damped oscillatory wave only	
Option B:	Overdamped wave	
Option C:	Critically damped wave	
Option D:	Can be damped wave or damped oscillatory wave	
Q8.	Parallel resonant transformer test system is used when	
Option A:	Large test voltages are needed	
Option B:	Stable output voltage with high rate of rise of voltage is needed	
Option C:	Large current is needed	
Option D:	When high frequency test voltage is needed	
Q9.	In testing with a resonant transformer, the output voltage is	
Option A:	Rectangular wave	
Option B:	Triangular wave	
Option C:	Trapezoidal wave	
Option D:	Pure sine wave	
Q10.	To minimize the inductance in impulse current generator circuits	
Option A:	Capacitors are connected in parallel	
Option B:	Capacitors are subdivided into smaller units	
Option C:	Air core inductances are used in series	
Option D:	Discharge path is made into a rectangular path	
Q11.	According to Paschen's law, the minimum sparking potential of nitrogen is	
Option A:	327 V	
Option B:	420 V	
Option C:	251 V	
Option D:	137 V	
012	"The voltage gradient required to produce visual AC corona in air at a conductor	
Q12.	surface"	
Ontion A:	Corona incontion voltago	
Option R:	Corona broakdown voltago	
Option D:	Corona post breakdown voltage	
Option D:	Corona saturation voltage	
012	The limitations of Townsond's theony of breakdown in gaseous dielectric are	
Q13.	overcome in	
Option A:	Streamer's Theory	

Option C: Thermal breakdown theory Option D: Stressed oil volume theory Q14. For electrical insulation purposes, vacuum is used at Option A: High pressure vacuum Option D: Low pressure vacuum Option D: Ultra-high-pressure vacuum Option D: Ultra-high-pressure vacuum Option A: Gains energy from the field and loses during collision Option A: Gains energy during both motion and collision Option B: Loses energy during both motion and collision Option B: Gains energy during both motion and collision Option B: Loses energy during both motion and collision Option C: Loses energy during both motion and collision Option B: Relative values of all resistor Option B: Relative values of all resistor Option C: Size of resistor Option A: Solution of Laplace equation Option B: Electrolytic tank method Option A: Solution of Laplace equation Option B: Electrolytic tank method Option B: Field swhich are both bounded and unbounded Option C: Field swhich are both bounded and unb	Option B:	Cavitation and bubble theory	
Option D: Stressed oil volume theory Q14. For electrical insulation purposes, vacuum is used at Option A: High pressure vacuum Option C: Very high-pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Q160 D: Loses energy from the field and loses during collision Option A: Gains energy form the field and gains during collision Option D: Loses energy from the field and gains during collision Q161. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Isse of resistor Option D: Moisture content T An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option B: Electrolytic tank method Option A: Solution of Laplace equation Option A: Field swhich are bounded Option A: Field untensity	Option C:	Thermal breakdown theory	
Q14. For electrical insulation purposes, vacuum is used at Option A: High pressure vacuum Option B: Low pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Qption A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option D: Loses energy during both motion and collision Option D: Loses energy from the field and gains during collision Option B: Galens energy from the field and gains during collision Option D: Loses energy from the field and gains during collision Option D: Loses energy from the field and gains during collision Option A: Single resistor Option C: Size of resistor Option C: Size of resistor Option C: Solution of Laplace equation Option A: Solution of Laplace equation Option D: Hoisture content Q17. An experimental method for computing the field distribution is Option C: Digital simulation Option D: Field and unbounded	Option D:	Stressed oil volume theory	
Q14. For electrical insulation purposes, vacuum is used at Option A: High pressure vacuum Option D: Low pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option C: Loses energy from the field and gains during collision Option C: Loses energy from the field and gains during collision Option B: Gains energy from the field and gains during collision Option C: Loses energy from the field and gains during collision Option B: Relative values of all resistor Option C: Single resistor Option C: Size of resistor Option A: Solution of Laplace equation Option A: Solution of Laplace equation Option A: Field intensity methods Q17. An experimental method for computing the field distribution is Option C: Digital simulation Option C: Digital simulation Option C: Digital simulation			
Option A: High pressure vacuum Option D: Low pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option C: Loses energy during both motion and collision Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Kelative values of all resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option B: Electrolytic tank method Option C: Digital simulation Option C: Digital simulation Option C: Field which are bounded Option C: Field swhich are bounded Option C: Fields which are bounded Option C: Field swhich are bounded Option C: Fields which are bounded Option C: Fields which are b	Q14.	For electrical insulation purposes, vacuum is used at	
Option B: Low pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy during both motion and collision Option B: Gains energy during both motion and collision Option D: Loses energy during both motion and collision Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Kise of resistor Option C: Size of resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option D: Field simulation Option A: Solution of Laplace equation Option A: Field swhich are bounded Option A: Field swhich are bounded Option A: Fields which are bounded Option C: Fields which are both bounded and unbounded Option A: Fields which are both bounded and unbounded Option A:	Option A:	High pressure vacuum	
Option C: Very high-pressure vacuum Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option D: Loses energy during both motion and collision Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option D: Joisture content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option D: Field intensity methods Q18. FEM can be used only with Option C: Field simulation Option C: Fields which are unbounded Option C: Fields which are both bounded and unbounded Option D: When high accuracy is not required	Option B:	Low pressure vacuum	
Option D: Ultra-high-pressure vacuum Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option C: Loses energy during both motion and collision Option D: Loses energy during both motion and collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Kelative values of all resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option C: Solution of Laplace equation Option D: FEM can be used only with Option A: Field intensity methods Q17. An experimental method for computing the field distribution is Option C: Digital simulation Option C: Digital simulation Option A: Field intensity methods Q18. FEM can be used only with Option C: Fields which are unbounded Option C: Fields which are both bounded and unbounded	Option C:	Very high-pressure vacuum	
Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option D: Loses energy from the field and gains during collision Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Noisure content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option B: Electrolytic tank method Option C: Digital simulation Option D: Field intensity methods Q18. FEM can be used only with Option D: Fields which are bounded Option D: When high accuracy is not required Q19. A small size HV laboratory is one that contains Impulse Test equipment of	Option D:	Ultra-high-pressure vacuum	
Q15. Within dielectric, an electron starting from the cathode will drift towards the anode and during this motion Option A: Gains energy from the field and loses during collision Option B: Gains energy during both motion and collision Option D: Loses energy during both motion and collision Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option D: Digital simulation Option A: Solution of Laplace equation Option A: FEM can be used only with Option A: Field ntensity methods Q18. FEM can be used only with Option B: Fields which are bounded Option C: Fields which are bounded Option B: Fields which are both bounded and unbounded Option C: Fields which are both bounded and unbounded Option B: Fields which are both bounded and unbounded Option B: Fields which are both bounded and u			
anode and during this motionOption A:Gains energy from the field and loses during collisionOption B:Gains energy during both motion and collisionOption C:Loses energy during both motion and collisionOption D:Loses energy from the field and gains during collisionQ16.Potential dividers the output voltage depend upon theOption A:Single resistorOption B:Relative values of all resistorOption C:Size of resistorOption C:Size of resistorOption C:Solution of Laplace equationOption A:Solution of Laplace equationOption D:Field simulationOption D:Field simulationOption D:Field simulationOption D:Field simulationOption D:Field simulationOption D:Field simulationOption D:Fields which are unboundedOption C:Fields which are unboundedOption C:Fields which are unboundedOption D:When high accuracy is not requiredOption D:When high accuracy is not requiredOption A:More than 10 KJOption A:More than 10 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q15.	Within dielectric, an electron starting from the cathode will drift towards the	
Option A:Gains energy from the field and loses during collisionOption B:Gains energy during both motion and collisionOption C:Loses energy during both motion and collisionOption D:Loses energy from the field and gains during collisionQ16.Potential dividers the output voltage depend upon theOption A:Single resistorOption D:Relative values of all resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption C:Digital simulationOption C:Digital simulationOption A:Solution of Laplace equationOption A:Solution and colly withOption C:Digital simulationOption C:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are unboundedOption D:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of		anode and during this motion	
Option B:Gains energy during both motion and collisionOption C:Loses energy from the field and gains during collisionOption D:Loses energy from the field and gains during collisionQ16.Potential dividers the output voltage depend upon theOption A:Single resistorOption B:Relative values of all resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption D:Jigital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are boundedOption C:Fields which are unbounded and unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment ofratingOption A:Equal to or less than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option A:	Gains energy from the field and loses during collision	
Option C:Loses energy during both motion and collisionOption D:Loses energy from the field and gains during collisionQ16.Potential dividers the output voltage depend upon theOption A:Single resistorOption B:Relative values of all resistorOption C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption C:Fields which are boundedOption C:Fields which are unboundedOption B:Fields which are both bounded and unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of	Option B:	Gains energy during both motion and collision	
Option D: Loses energy from the field and gains during collision Q16. Potential dividers the output voltage depend upon the Option A: Single resistor Option B: Relative values of all resistor Option D: Moisture content Q17. An experimental method for computing the field distribution is Option A: Solution of Laplace equation Option B: Electrolytic tank method Option C: Digital simulation Option C: Digital simulation Option B: FEM can be used only with Option B: Fields which are bounded Option C: Fields which are unbounded Option B: Fields which are bounded and unbounded Option C: Fields which are both bounded and unbounded Option D: When high accuracy is not required Q19. A small size HV laboratory is one that contains Impulse Test equipment ofrating Option C: Equal to or less than 10 KJ Option D: More than 10 KJ Option D: More than 100 KJ Option D: More than 100 KJ Option D: More than 100 KJ Option D:	Option C:	Loses energy during both motion and collision	
Q16.Potential dividers the output voltage depend upon theOption A:Single resistorOption B:Relative values of all resistorOption C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are unboundedOption D:Fields which are unboundedOption D:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment ofratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option D:	Loses energy from the field and gains during collision	
Q16.Potential dividers the output voltage depend upon theOption A:Single resistorOption B:Relative values of all resistorOption C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption D:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption B:Fields which are boundedOption D:Fields which are both boundedOption D:Fields which are both boundedOption B:Fields which are both boundedOption B:Fields which are both boundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment ofratingOption B:Equal to or less than 10 KJOption D:More than 10 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?			
Option A:Single resistorOption B:Relative values of all resistorOption C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption B:Fields which are boundedOption C:Fields which are unboundedOption C:Fields which are unboundedOption B:Fields which are both bounded and unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Wore than 10 KJOption D:More than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q16.	Potential dividers the output voltage depend upon the	
Option B:Relative values of all resistorOption C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption D:Fields which are boundedOption D:Fields which are boundedOption D:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:Equal to or less than 10 KJOption D:Wore than 10 KJOption D:Wore than 100 KJOption D:Wore than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option A:	Single resistor	
Option C:Size of resistorOption D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Equal to or less than 10 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option B:	Relative values of all resistor	
Option D:Moisture contentQ17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are unboundedOption D:Vhen high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:Equal to or less than 10 KJOption D:Kore than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option C:	Size of resistor	
Q17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption D:Fields which are unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Whore than 10 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option D:	Moisture content	
Q17.An experimental method for computing the field distribution isOption A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption D:Fields which are unboundedOption D:Viends which are unbounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Where than 10 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?			
Option A:Solution of Laplace equationOption B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Wore than 10 KJOption D:More than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q17.	An experimental method for computing the field distribution is	
Option B:Electrolytic tank methodOption C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Equal to or less than 10 KJOption D:More than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option A:	Solution of Laplace equation	
Option C:Digital simulationOption D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option B:	Electrolytic tank method	
Option D:Field intensity methodsQ18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of 	Option C:	Digital simulation	
Q18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption C:Equal to or less than 10 KJOption D:More than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option D:	Field intensity methods	
Q18.FEM can be used only withOption A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption D:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJQ20.Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?			
Option A:Fields which are boundedOption B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption D:More than 100 KJOption D:Kin Of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q18.	FEM can be used only with	
Option B:Fields which are unboundedOption C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option A:	Fields which are bounded	
Option C:Fields which are both bounded and unboundedOption D:When high accuracy is not requiredQ19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJOption D:Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option B:	Fields which are unbounded	
Option D: When high accuracy is not required Q19. A small size HV laboratory is one that contains Impulse Test equipment ofrating Option A: More than 10 KJ Option B: Equal to or less than 10 KJ Option C: Equal to or less than 100 KJ Option D: More than 100 KJ Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option C:	Fields which are both bounded and unbounded	
Q19. A small size HV laboratory is one that contains Impulse Test equipment ofrating Option A: More than 10 KJ Option B: Equal to or less than 10 KJ Option C: Equal to or less than 100 KJ Option D: More than 100 KJ Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option D:	When high accuracy is not required	
Q19.A small size HV laboratory is one that contains Impulse Test equipment of ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJQ20.Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?			
ratingOption A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJQ20.Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q19.	A small size HV laboratory is one that contains Impulse Test equipment of	
Option A:More than 10 KJOption B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJQ20.Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?		rating	
Option B:Equal to or less than 10 KJOption C:Equal to or less than 100 KJOption D:More than 100 KJQ20.Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option A:	More than 10 KJ	
Option C: Equal to or less than 100 KJ Option D: More than 100 KJ Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option B:	Equal to or less than 10 KJ	
Option D: More than 100 KJ Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option C:	Equal to or less than 100 KJ	
Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Option D:	More than 100 KJ	
Q20. Which of the following type of high voltage testing laboratory, meant for engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	-		
engineering colleges and universities to open facilities of regular teaching and training and HV testing for the clients?	Q20.	Which of the following type of high voltage testing laboratory, meant for	
training and HV testing for the clients?		engineering colleges and universities to open facilities of regular teaching and	
		training and HV testing for the clients?	

Option A:	Small size laboratory	
Option B:	Medium size laboratory	
Option C:	Large size laboratory	
Option D:	UHV laboratory	
Q21.	A medium size laboratory is one that contains AC (power frequency) Test	
	equipment ofrating.	
Option A:	1 KVA to 10 KVA	
Option B:	0 KVA	
Option C:	100 KVA to 1000 KVA	
Option D:	More than 1000 KVA	
Q22.	In impulse testing of transformers fault location is usually done by	
Option A:	Neutral current oscillogram	
Option B:	Chopped wave oscillogram	
Option C:	Observing for noise or smoke	
Option D:	Scanning method	
Q23.	C- tan delta test on electric bushing is done using	
Option A:	Impulse generator	
Option B:	HV Schering bridge	
Option C:	Power frequency cascade transformer unit	
Option D:	Resonant transformer.	
Q24.	Most crucial test conducted on an isolator is	
Option A:	Open circuit test	
Option B:	Short circuit test	
Option C:	High current test	
Option D:	Temperature rise and pressure measurement tests	
Q25.	In C- tan delta test, a steep increase in tan delta, when the applied voltage	
	increases from 100% to 110% indicates	
Option A:	Insulation is failing	
Option B:	Presence of an internal discharge	
Option C:	Increase in relative permittivity	
Option D:	Decrease in insulation resistance	

Program: BE Electrical Engineering

Curriculum Scheme: Revised - 2016

Examination: Final Year Semester VII

Course Code: EEDLO7031 and Course Name: High Voltage Engineering (HVE)

Time: 1-hour

Max. Marks: 50

Question	Correct Option
	(Enter either 'A' or 'B' or 'C' or 'D')
Q1.	Α
Q2.	C
Q3.	D
Q4	с
Q5	А
Q6	D
Q7	D
Q8.	В
Q9.	D
Q10.	В
Q11.	С
Q12.	А
Q13.	А
Q14.	А
Q15.	А

Q16.	В
Q17.	В
Q18.	А
Q19.	В
Q20.	А
Q21.	С
Q22.	А
Q23.	В
Q24.	В
Q25.	В