Program: BE Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VII

Course Code: DLO 7041 Course Name: prestressed concrete

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carries equal marks .

A prestressed concrete beam span 10m of rectangular section, 120mm wide &		
300mm deep is axially prestressed on effective force of 180kN, uniformly		
distributed load of 5kN/m include the self weight of member. The maximum		
shear stress at support is		
20.5 N/mm2		
1.05 N/mm2		
15.08 N/mm2		
4.05 N/mm2		
The web shear cracks generally start from :		
Interior point		
Exterior point		
Edge		
Mid span		
Ranges of stresses at top and bottom fibres are inversely proportional to		
Section moduli of top and bottom fibre		
Self weight and live load moment		
Efficiency of the section		
Amount of prestressing force		
If Z = $14*10^6$ mm ³ and superior and inferior stresses are -5.9N/mm ² and		
22N/mm ² respectively, area of the section is 150*10 ³ mm ² then the minimum		
prestressing force would be		
1207KN		
120.7KN		
1.27KN		
130kN		
If Z = $14*10^6$ mm ³ and superior and inferior stresses are -5.9N/mm ² and		
22N/mm ² respectively area of the section is 150*10 ³ mm ² the corresponding		

	eccentricity would be	
Option A:	165mm	
Option B:	148mm	
Option C:	161mm	
Option D:	142mm	
<mark>Q6.</mark>	The stress in the concrete must not exceed 17N/mm ² in compression and 0	
	orresponding range of stresses at top and bottom fibres are	
Option A:	14.45 N/mm ² , 17 N/mm ²	
Option B:	-14.45 N/mm ² . 17 N/mm ²	
Option C:	14.45 N/mm ² 17 N/mm ²	
Option D:	17 N/mm ² , 14,45 N/mm ²	
<mark>Q7.</mark>	When the resultant compression force is acting at upper kern points the stress at the bottom most fibre of a beam is	
Option A:	<mark>zero</mark>	
Option B:	positive	
Option C:	Negative	
Option D:	Equal to bending stress	
•		
<mark>Q8.</mark>	A rectangular beam is subjected to pre-stressing force of 180KN acting concentrically if the beam is subjected to a moment of 25KNm then the pressure line is located at	
Option A:	158.8	
Option B:	148.8	
Option C:	<mark>138.8</mark>	
Option D:	168.8	
<mark>Q9.</mark>	A concrete beam subjected to an eccentric prestressing force of magnitude P located at an eccentricity e. The stress developed at the top fibers of the beam will be.(A and Z are the cross sectional area and sectional modulus respectively)	
Option A:	$\frac{P}{A} + \frac{Pe}{Z}$	
Option B:		
	$\overline{A}^{-}\overline{Z}$	
Option C:	$\frac{P}{A} - \frac{Pe}{Z}$	
Option D:	P P	
	$\overline{A}^+ \overline{Z}$	
<mark>Q10.</mark>	A prestressed concrete beam of width 150mm and depth 300mm is subjected to	
	a force of 180KN with a straight cable an an eccentricity of 55mm. The	
	corresponding stress in concrete at level of steel fc would be	
Option A:	13.33	
Option B:	4.33	

Option C:	1.33		
Option D:	5.61		
<mark>Q11.</mark>	If stress in concrete at level of steel fc = 5.45 Ec = 35KN/mm ² and Es =		
	210KN/mm ² and ϕ = 1.4. The percentage loss of stress would be creep of		
	concrete is		
Option A:	3270		
Option B:	32.7		
Option C:	45.78		
Option D:	0.327		
<mark>Q12</mark> .	The relaxation of steel stress is defined as		
Option A:	Change in deflection at constant strain		
Option B:	Change in strain at constant stress		
Option C:	Change in deflection at constant stress		
Option D:	Change in stress at constant strain		
<mark>Q13.</mark>	The deformation of prestressed members change with time as a result of:		
Option A:	Creep and shrinkage		
Option B:	Friction and torsion		
Option C:	Deformation and flexibility		
Option D:	Cracking moment		
•			
<mark>Q14.</mark>	Which type of deflections is solved by Mohr's theorem?		
Option A:	Instantaneous		
Option B:	Long		
Option C:	Middle span		
Option D:	End span		
<mark>Q15.</mark>	The upward deflection induced in a prestressed concrete beam subjected to a		
	prestressing force P of a straight cable at an eccentricity e can be expressed as		
Option A:	Pel ² /48EI		
Option B:	5Pel ² /48El		
Option C:	Pel ² /8El		
Option D:	Pel ² /El		
<mark>Q16.</mark>	The creep strain due to the transverse loads is directly computed as a function		
	of:		
Option A:	Strain coefficient		
Option B:	Creep coefficient		
Option C:	Stress coefficient		
Option D:	Bending		
Q17.	If fck = 40 N/mm ² then the maximum principal tensile stress would be		
Option A:	1.51		
Option B:	1.2		

Option C:	2.5	
Option D:	2.2	
<mark>Q18.</mark>	The maximum shear stress at support is 1.5N/mm ² , the magnitude of principal	
	tension developed without axial prestressing is	
Option A:	2.5 N/mm ²	
Option B:	1.5N/mm ²	
Option C:	1 N/mm ²	
Option D:	2 N/mm ²	
<mark>Q19.</mark>	Vertical prestressing is generally avoided because	
Option A:	Loss of prestress due to shrinkage is high	
Option B:	Loss of prestress due to creep is high	
Option C:	Loss of prestress due to friction is high	
Option D:	Loss of prestress due to anchorage slip is high	
<mark>Q20.</mark>	For type1 member at service load the permissible tensile stress is	
Option A:	Zero	
Option B:	$0.5\sqrt{fck}$	
Option C:	$0.24\sqrt{fck}$	
Option D:	$0.75\sqrt{fck}$	
-		
Q21.	In the method of post tensioning	
Option A:	The tendons are stretched then concrete units are cast	
Option B:	Both concrete casting and tendon stretching done simultaneously	
Option C:	The concrete units are cast then through duct tendons passed	
Option D:	Only tendons are stretched no concrete units casted	
Q22.	In Lee mccall system the forces are transferred by	
Option A:	Shearing at centre	
Option B:	Shearing at ends	
Option C:	Bonding at ends	
Option D:	Bearing at the ends	
<mark>Q23.</mark>	A prestressed concrete beam is loaded with uniformly distributed loading. The	
	profile of the cable is laid based on the load balancing concept, the shape of the	
	profile is	
Option A:	Parabolic	
Option B:	Triangular	
Option C:	Trapezoidal	
Option D:	sloping	
Q24.	A prestressed concrete beam is subjected to UDL and bottom fiber stress is zero.	
	The pressure line at the center of span will be located at a distance of	
Option A:	<mark>n/o</mark>	

Option B:	h/20
Option C:	h/4
Option D:	h/3
<mark>Q25.</mark>	The shift of pressure line e' can be expressed as where a = lever arm distance and
	e = eccentricity
Option A:	e' = a-e
Option B:	e' = a+e
Option C:	e' = a*e
Option D:	e' = a/e

Program: BE Civil Engineering

Examination: Third Year Semester VII

Course Code: DLO 7041 Course Name: prestressed concrete

Time: 1 hour

Max. Marks: 50

Question	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	А
Q3.	А
Q4	A
Q5	С
Q6	А
Q7	А
Q8.	С
Q9.	С
Q10.	D
Q11.	С
Q12.	D
Q13.	A
Q14.	А
Q15.	С
Q16.	С
Q17.	А
Q18.	В

Q19.	D
Q20.	А
Q21.	С
Q22.	D
Q23.	А
Q24.	А
Q25.	А