University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev2012
Examination: Final Year Semester VII Course Code: CPE7021 and Course Name: Advanced Algorithm Max. Marks: 50

Time: 1 hour

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	A binomial heap with n nodes has --------number of trees
Option A:	logn
Option B:	n
Option C:	nlogn
Option D:	$\mathrm{n} / 2$
Q2.	In all the paths of the RB tree, there should be same number ------- nodes.
Option A:	Black
Option B:	Red
Option C:	Red and Black
Option D:	Black and Red
Q3.	There should not be two consecutive ------------nodes in RB tree
Option A:	Black
Option B:	Red
Option C:	Brown
Option D:	Green
Q4.	What is the time complexity of $100 \times 200,200 \times 300$ and 300×400 matrix chain multiplication problem?
Option A:	O(1)
Option B:	O(n)

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Option C:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
Option D:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
Q5.	Bellman Ford Algorithm is an example for..........
Option A:	Dynamic Programming
Option B:	Greedy Algorithms
Option C:	Linear Programming
Option D:	Branch and Bound
Q6.	What does Maximum flow problem involve
Option A:	finding a flow between source and sink that is maximum
Option B:	finding a flow between source and sink that is minimum
Option C:	finding the shortest path between source and sink
Option D:	computing a minimum spanning tree
Q7.	If the number of available constraints is 3 and the number of parameters to be optimized is 4 , then
Option A:	The objective function can be optimized
Option B:	The constraints are short in number
Option C:	The solution is problem oriented
Option D:	The constraints are sufficient in number
Q8.	Area of parallelogram can be find out by....
Option A:	cross product of two vectors
Option B:	dot product of two vectors
Option C:	multiplication of vectors
Option D:	dot product of one vector \& one number

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q9.	Which is more efficient algorithm in flow network
Option A:	Ford Fulkerson
Option B:	Push to Relabel
Option C:	Relabel to front
Option D:	Bipartite
Q10.	
Option A:	Find the complexity of T $(\mathrm{n})=3 \mathrm{n}$) $(\mathrm{n} / 2)+\mathrm{n}^{\wedge} 2$
Option B:	Ө (n^2)
Option C:	Ө (2^n)
Option D:	Ө (n)
Q11.	The graph of $\mathrm{x} \leq 2$ and $\mathrm{y} \geq 2$ will be situated in the
Option A:	First and second quadrant
Option B:	Second and third quadrant
Option C:	First and third quadrant
Option D:	Third and fourth quadrant
Q12.	In. L.P.P-----
Option A:	objective function is linear
Option B:	constraints are linear
Option C:	Both objective function and constraints are linear
Option D:	Neither objective function nor constraints are linear
Q13.	To which type of problems does quick hull belong to?
Option A:	numerical problems
Option B:	computational geometry
Option C:	graph problems
Option D:	string problems
Q14.	What is order of tree after merging two tree of order k?
Option A:	$2 * \mathrm{k}$
Option B:	$\mathrm{k}+1$

University of Mumbai
 Examination 2020 under cluster 4 (PCE)

Option D:	k+logk
Q15.	For the binomial tree Bk the height of tree is -----
Option A:	2K
Option B:	k+1
Option C:	K
Option D:	K-1
Q16.	This algorithm maintains list of vertices to compute maximum flow
Option A:	Ford Fulkerson
Option B:	Bipartite algorithm
Option C:	Relabel to front
Option D:	Prims algorithm
Q17.	The area of the feasible region for the following constraints $3 y+x \geq 3, x \geq 0$, $y \geq 0$ will be
Option A:	Bounded
Option B:	Unbounded
Option C:	Convex
Option D:	Concave
Q18.	The Master Theorem applies to recurrences of the following form
Option A:	$\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$
Option B:	$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$
Option C:	$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n})+\mathrm{f}(\mathrm{n})$
Option D:	$\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n})+\mathrm{f}(\mathrm{n})$
Q19.	What is the average case complexity of a convex hull algorithm?
Option A:	$\mathrm{O}(\mathrm{n})$
Option B:	O(nlogn)
Option C:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
Option D:	$\mathrm{O}(\log \mathrm{n})$

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Q20.	Which of the following is the recurrence relation for the matrix chain multiplication problem where mat $[\mathrm{i}-1]$ * mat $[\mathrm{i}]$ gives the dimension of the ith matrix?
Option A:	$\mathrm{dp}[\mathrm{i}, \mathrm{j}]=1$, if $\mathrm{i}=\mathrm{j}, \mathrm{dp}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{dp}[\mathrm{i}, \mathrm{k}]+\mathrm{dp}[\mathrm{k}+1, \mathrm{j}]\}$
Option B:	$\mathrm{dp}[\mathrm{i}, \mathrm{j}]=0$, if $\mathrm{i}=\mathrm{j}, \mathrm{dp}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{dp}[\mathrm{i}, \mathrm{k}]+\mathrm{dp}[\mathrm{k}+1, \mathrm{j}]\}$
Option C:	$\mathrm{dp}[\mathrm{i}, \mathrm{j}]=1$, if $\mathrm{i}=\mathrm{j}, \mathrm{dp}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{dp}[\mathrm{i}, \mathrm{k}]+\mathrm{dp}[\mathrm{k}+1, \mathrm{j}]\}+\operatorname{mat}[\mathrm{i}-1]^{*} \operatorname{mat}[\mathrm{k}]^{*} \operatorname{mat}[\mathrm{j}]$
Option D:	$\mathrm{dp}[\mathrm{i}, \mathrm{j}]=0$, if $\mathrm{i}=\mathrm{j}, \operatorname{dp}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{dp}[\mathrm{i}, \mathrm{k}]+\mathrm{dp}[\mathrm{k}+1, \mathrm{j}]\}+\operatorname{mat}[\mathrm{i}-1]^{*} \operatorname{mat}[\mathrm{k}]^{*} \operatorname{mat}[\mathrm{j}]$
Q21.	How many colors are used in a bipartite graph?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q22.	The region represented by $2 x+3 y-5 \leq 0$ and $4 x-3 y+2 \leq 0$, is
Option A:	Not in first quadrant
Option B:	Unbounded in first quadrant
Option C:	Bounded in first quadrant
Option D:	Bounded in second quadrant
Q23.	The objective function for a L.P model is $3 x 1+2 x 2$, if $x 1=20$ and $x 2=30$, what is the value of the objective function?
Option A:	0
Option B:	50
Option C:	60
Option D:	120
Q24.	The most important condition for which closest pair is calculated for the points $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)$ is
Option A:	$\mathrm{i}>\mathrm{j}$
Option B:	i! $=$ j
Option C:	$\mathrm{i}=\mathrm{j}$
Option D:	$i<j$
Q25.	What is the basic operation of closest pair algorithm using brute force technique?
Option A:	Euclidean distance
Option B:	Radius
Option C:	Area
Option D:	Manhattan distance

University of Mumbai

Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering
Curriculum Scheme: Rev2012
Examination: Final Year Semester VII
Course Code: CPE7021 and Course Name: Advanced Algorithm
Time: 1 hour
Max. Marks: 50

Question	Correct Option Enter either 'A' or 'B' or ' \mathbf{C}^{\prime} or ' ${ }^{\prime}$ ')
Q1.	A
Q2.	A
Q3.	B
Q4	D
Q5	A
Q6	A
Q7	B
Q8.	A
Q9.	C
Q10.	B
Q11.	B
Q12.	C
Q13.	B
Q14.	B
Q15.	C
Q16.	C
Q17.	B
Q18.	A
Q19.	B
Q20.	D
Q21.	B
Q22.	B
Q23.	D
Q24.	A
Q25.	

