$\begin{aligned} & \text { Q=QUESTIO } \\ & \text { A=ANSWER } \end{aligned}$	question_description answer_description	question_explanation answer_explanation	question_type answer_isright	question_difficulty answer_position
Q	The average value of the angular position of the satellite with reference to perigee is given by		M	1
A	True Anamoly		0	1
A	Mean Anamoly		1	2
A	Inclination		0	3
A	Semi-major axis		0	4
Q	The point where orbit crosses equitorial plane going from North to South is		M	1
A	Descending Node		1	1
A	Ascending Node		0	2
A	Apogee		0	3
A	Perigee		0	4
Q	Semi-Major axis of an orbit defines		M	1
A	Size of the orbit		1	1
A	Shape of the orbit		0	2
A	Inclination of the orbit		0	3
A	Location of the satellite in the orbit If R is radius of the earth then apogee		0	4
Q	height is given by		M	1
A	ha=R-ra where ra= a $11+\mathrm{e}$),		0	1
A	ha=R-rp where $\mathrm{rp}=\mathrm{a}(1-\mathrm{e})$,		0	2
A	$\mathrm{ha}=\mathrm{ra}-\mathrm{R}$ where $\mathrm{ra}=\mathrm{a}(1+\mathrm{e})$,		1	3
A	ha $=r p-R$ where $r p=a(1-e)$,		0	4
Q	If R is radius of the earth then perigee height is given by		M	1
A	$\mathrm{hp}=\mathrm{R}-\mathrm{ra}$ where $\mathrm{ra}=\mathrm{a}(1+\mathrm{e})$,		0	1
A	$\mathrm{hp}=\mathrm{R}-\mathrm{rp}$ where $\mathrm{rp}=\mathrm{a}(1-\mathrm{e})$,		0	2
A	$\mathrm{hp}=\mathrm{ra-R}$ where $\mathrm{ra}=\mathrm{a}(1+\mathrm{e})$,		0	3
A	$\mathrm{hp}=\mathrm{rp}-\mathrm{R}$ where $\mathrm{rp}=\mathrm{a}(1-\mathrm{e})$,		1	4
Q	In C band the down link frequency is		M	1
A	6 GHz		0	1
A	4 GHz		1	2
A	11 GHz		0	3
A	14 GHz		0	4
Q	For satellite communicationwhich band of the following is not used?		M	1
A	Ku		0	1
A	MF		1	2
A	Ka		0	3
A	C		0	4
Q	The time period in which a particular satellite must be launched is called as		M	1
A	Orbital time period		0	1
A	Launch Window		1	2
A	Lapsed time		0	3
A	Mean time		0	4

Q	The east and west limits on the geostationary arc visible from any given earth station is called as	M		1
A	Look angles		0	1
A	Limits of Visibility		1	2
A	Nadir angle		0	3
A	Range of satellite		0	4
Q	Sun Synchronous orbits are normally	M		1
A	Polar Orbits		1	1
A	Geostationary orbits		0	2
A	Parking Orbits		0	3
A	Transfer orbits		0	4
Q	Line joining center of the sun center of the earth and first point of aries at spring equnox is called as	M		1
A	Line of nodes		0	1
A	Line of apsides		0	2
A	Line of aries		1	3
A	boresight		0	4
Q	The spy satellites are normally in the	M		1
A	LEO		1	1
A	MEO		0	2
A	HEO		0	3
A	Geostationary orbits		0	4

