Q=QUES	question_description	question	question_	question_difficulty
<mark>A=ANSW</mark>	answer_description	answer_e	answer_is	answer_position
Q	Combustion reaction of fuels is a/an reaction.		М	1
Q A	exothermic		1	1
A	auto catalytic		0	2
A	constant enthalpy		0	2 3
A	endothermic		0	4
21			0	
Q	Presence of in a dry gaseous fuel does not contribute to its calorific value.		М	1
A	hydrogen		0	1
A	oxygen		1	2 3
A	carbon		0	3
A	sulphur		0	4
	Which fuel is partially carbonized and is considered as a primary stage in coal			
Q	formation?		М	1
A	Coal bitumen		0	1
A	Anthracite		0	2 3
A	Peat		1	
A	Lignite		0	4
Q	In what forms are liquid fuels available in nature?		Μ	1
A	Petroleum naphtha		0	1
A	Petroleum spirit		0	2
A	Light distillate		0	<mark>3</mark>
A	Crude petroleum		1	<mark>4</mark>
Q	Which gaseous fuel has a very low heating value?		Μ	1
A	Coke oven gas		0	1
A	Water gas		0	2 3
A	Blast furnace gas		1	
A	Mond gas		0	<mark>4</mark>
<mark>Q</mark>	Higher efficiency in the combustion of solid fuel can not be achieved by		М	1
A	Proper fuel preparation.		0	1

A	Adopting efficient-fuel firing technique & equipment.		0	2
A	Supplying correct quantity of combustion air.		0	3
A	Keeping the flue gas exhaust temperature very high.		1	4
Q	The heat of combustion of a fuel	М		1
A	Is always negative.		1	1
A	Is equal to the heat of formation.		0	2
A	Can't be known without calculating it.		0	3
A	Is always positive.		0	4
Q	Proximate analysis of coal determines its content.	М		1
A	Moisture, ash, sulphur & volatile matter.		0	1
A	Moisture, volatile matter, ash & fixed carbon.		1	2
A	Moisture, sulphur, nitrogen & fixed carbon.		0	3
A	Moisture, sulphur nitrogen & fixed carbon.		0	4
Q	Lancashire boiler is	М		1
× A	Stationary fire tube boiler	141	1	1
A	Stationary water tube boiler		0	2
A	Water tube boiler with natural/forced circulation		0	3
A	Mobile fire tube boiler		0	4
Q	The diameter of internal flue tubes in a Lancashire boiler compared to its shell is	М	Ŭ	1
× A	One-half	141	0	1
A	One-third		0	2
A	Two-fourth		1	3
A	Two-fifth		0	4
	When the circulation of water, in a boiler, is by convection currents which are set up		, in the second	
Q	during the heating of water, then the boiler is known as	М		1
Ā	internally fired boiler		0	1
A	Externally fired boiler		0	2
A	Natural circulation boiler		1	3
A	Forced circulation boiler		0	4
Q	The high steam and low water safety valve is not used in	М	Ű,	. 1
A	Cochran boiler		0	1
A	Cornish boiler		0	2

A	Lancashire boiler	0) 3
A	Locomotive boiler	1	. 4
Q	The feed check valve is used in order to	М	1
A	Regulate flow of boiler water Recirculate unwanted feed water	() 1
A	Check level of water in boiler drum	() 2
A	Recirculate unwanted feed water	() 3
	Allow high pressure feed water to flow to drum and not allow reverse flow to take		
A	place	1	. 4
Q	An economiser the steam raising capacity of a boiler.	М	1
A	Increases	1	. 1
A	Decreases	(
A	Has no effect on	() 3
A	Drastically increases	() 4
Q	Which of the following boilers is best suited to meet fluctuating demands?	М	1
A	Babcock and Wilcox	() 1
A	Locomotive	1	. 2
A	Lancashire	() 3
A	Cochran	() 4
	Which of the following statement indicates the difference between Cornish boiler and		
Q	Lancashire boiler?	М	1
A	Cornish boiler is a water tube boiler whereas Lancashire boiler is a fire tube boiler	() 1
A	Cornish boiler is a fire tube boiler whereas Lancashire boiler is a water tube boiler	(
A	Cornish boiler has one flue tube whereas Lancashire boiler has two flue tubes	1	. 3
A	Cornish boiler has two flue tubes whereas Lancashire boiler has one flue tube	() 4
Q	There is no steam drum in	М	1
A	La Mont boiler	() 1
A	Loffler boiler	(
A	Benson boiler	1	. 3
A	Velox boiler	() 4
Q	The equivalent evaporation of a boiler is a measure to compare	М	1
A	The given boiler with the model	0) 1
A	The two different boilers of the same make	0	
A	Two different makes of boiler operating under same conditions	() 3

A	Any type of boiler operating under any condition		1	4
Q	The efficiency of a boiler is defined as	М		1
A	Ratio of heat actually used in producing steam to the heat liberated in the furnace		1	1
A	Ratio of the mass of steam produced to the mass of total water supplied in a given time		0	2
A	Ratio of the heat liberated in the furnace to the heat actually used in producing steam		0	3
A	Ratio of the mass of steam produced to the heat liberated in the furnace in a given time		0	4
Q	Which of the following is a water tube boiler	М		1
A	Locomotive boiler		0	1
A	Lancashire boiler		0	2
A	Cornish boiler		0	3
A	Babcock and wilcox boiler		1	4
Q	Boiler rating is usually defined in terms of	М		1
A	Maximum temperature of steam in Kelvin		0	1
A	Heat transfer rate in KJ/hr		0	2
A	Heat transfer area in square meter		0	3
A	steam output in kg/hr		1	4
Q	Heat is mainly transferred by conduction, convection and radiation in	М		1
A	Insulated pipes carrying hot water		0	1
A	Refrigerator freezer coil		0	2 3
A	Boiler furnaces		1	3
A	condensation of steam in a condenser		0	4
Q	In an impulse turbine	М		1
A	The steam is expanded in nozzles only and there is a pressure drop and heat drop		1	1
A	The steam is expanded both in fixed and moving blades continuously		0	2
A	The steam is expanded in moving blades only		0	3
A	The pressure and temperature of steam remains constant		0	4
Q	Why is compounding of steam turbines done?	М		1
Q A	To improve efficiency		0	1
A	To reduce the speed of rotor		1	2
A	To reduce exit losses		0	2 3
A	To increase the turbine output		0	4

	In a reaction turbine the enthalpy drop in a stage is 60 units. The enthalpy drop in the			
Q	moving blades is 32 units. What is the degree of reaction?	М		1
A	0.533		1	1
A	0.284		0	2 3
A	0.466		0	3
A	1.875		0	4
Q A A	The parson's reaction turbine, the degree of reactio is	Μ		1
A	0.2		0	1
A	0.3		0	2
A	0.4		0	2 3
A	0.5		1	4
	At a stage of reaction turbine, mean blade speed is 220m/s. The speed ratio is 0.7 and			
Q	rotor speed is 3000 rpm. The absolute velocity of steam at the inlet is	М		1
A	314m/s		1	1
A	220m/s		0	2
Α	154m/s		0	2 3
A	300m/s		0	4
	In a single stage steam turbine, steam enters with a speed of 830 m/s. Mean blade speed			
	is 440 m/s and nozzle angle is 20°. If the blades are equiangular, the blade angle at the			
Q	exit will be	Μ		1
Q A	35°		0	1
A	45°		0	2
A	41°		1	2 3
A	30°		0	4
	In a stage of impulse reaction turbine, steam enters with a speed of 250 m/s at an angle			
	of 20° in the direction of blade motion. The blade diameter and height are 95 cm and			
	10 cm respectively. If the specific volume of steam at nozzle outlet is 3.5 m ³ /kg, mass			
Q	flow rate of steam in kg/sec is	М		1
Ā	3.1		0	1
A	84.8		0	2
A	6.9		0	2 3
A	7.3		1	4
Q	Difference between impulse and reacion turbine	Μ		1

	impulse turbine only pressure energy converted into work but in reaction turbine				
A	pressure and kinetic energy converted to work			0	1
	impulse turbine only pressure energy converted into work but in reaction turbine				
A	kinetic energy converted to work			0	2
	impulse turbine only kinetic energy converted into work but in reaction turbine				
A	pressure and kinetic energy converted to work			1	3
	impulse turbine only kinetic energy converted into work but in reaction turbine				
A	pressure converted to work			0	4
Q	which is not part of velocity traingle in reaction turbine	1	М		1
A	Guide blade angle			0	1
A	Vane angle at inlet			0	2
A	vane angle at outlet			0	3
A	velocity of steam after nozzle			1	4
Q	Fusible plug is used for]	М		1
A	to extinvish Fire in Furness			1	1
A	to control pressure			0	2
A	to control water level			0	3
A	to control steam generation			0	4
Q	Feed check valve used for]	М		1
A	to control Feed water			1	1
A	to Control Pressure of feed steam			0	2
A	to control Velocity Of steam			0	3
A	to control fuel supply to boiler			0	4
Q	A gas turbine with open cycle works on	1	М		1
A	erricsson cycle			0	1
A	Carnot cycle			0	2
A	Rankine Cycle			0	3
A	Atkinson cycle			1	4
	The efficiency of a machine is 50%. If 300 J of energy is given to the machine, its				
Q	output is]	М		1
A	150J			1	1
A	100J			0	2

A	300J			0	3
A	350J			0	4
	In a Brayton cycle based power plant, the air at the inlet is at 27°C, 0.1 MPa. The				
	pressure ratio is 6.25 and the maximum temperature is 800°C. Find (a) the compressor				
Q	work per kg of air,Cp=1.005,k=1.4 for air coditions	J	Μ		1
A	207.72 KJ/kg			1	1
A	207.7 J/Kg			0	2
A	400 KJ/kg			0	3
A	310 J/kg			0	4
Q A	The air standard cycle for a Gas-Turbine called as]	Μ		1
A	Reheat cycle			0	1
A	Rankine cycle			0	2
A	Brayton cycle			1	3
A	Diesel cycle			0	4
Q	The main component of gas turbine plant is]	Μ		1
Q A	Compressor			1	1
A	condensor			0	2
A	Boiler			0	3
A	economiser			0	4
<mark>Q</mark>	The percentage ratio of total energy at inlet with net work output of the cycle is]	М		1
A	Engine Efficiency			1	1
A	Combustion efficiency			0	2
A	Thermal efficiency			0	3
A	Compression efficiency			0	4
Q	In a two stage gas turbine plant, the thermal efficiency after reheating at first stage]	М		1
A	Decrease			1	1
A	Increase			0	2
A	Does not affect			0	3
A	Unpredictable			0	4
Q	Main application of gas turbines are used in]	Μ		1
A	Locomotives			0	1
A	Aircrafts			0	2
A	Automobiles			1	3

A	Pumping stations		0	4
Q	The maximum temperature in gas turbines in range of	М		1
A	200°C-300°C		0	1
A	700°C-800°C		1	2
A	400°C-500°C		0	3
A	1000°C-1100°C		0	4
Q	The Atinkson cycle consists of	М		1
A	Two reversible isotherms and two reversible isobars		0	1
A	Two reversible isochores and two reversible adiabatics		0	2
A	Two reversible isotherms and two reversible isochores		0	3
A	Two reversible isobars and two reversible adiabatics		1	4
Q	A gas turbine power plant that operates on the simple Brayton cycle with air as the working has a specified pressure ratio 12 and temperature at point 3 is 1000K and inlet temperature at T1 is 300K.Calculate the temprature T2 and T4,k=1.4 for air coditions	М		1
À	610K ,491K		1	1
A	700K,500K		0	2
A	300K,200K		0	3
A	810K,528K		0	4
	Air enters the compressor of an ideal air standard Brayton cycle at 100 kPa, 25 °C, with a volumetric flow rate of 8 m 3 /s. The compressor pressure ratio is 12. The turbine inlet temperature is 1100 °C. Determine the thermal efficiency			
Q	approximately, k=1.4 for air coditions	М		1
A	60%		1	1
A	70%		0	2
A	80%		0	3
A	40%		0	4
Q A	In jet propulsion power unit, the function of diffusar is to Collect more air	М	0	1
A	to raise he pressure of fluid		1	2
A	Provide robust structure		0	3
A	Beautify the shape		0	4

Q	The processes in compressor, turbine, diffuser and nozzle are	M		1
A	reversible		0	1
A	adiabatic		0	2
A	reversible and adiabatic		1	3
A	polytropic		0	4
Q	In aircraft propulsion the most widely used engine is	M		1
A	turbojet		0	1
A	turbofan		1	2
A	turboprop		0	3
A	ramjet		0	4
Q	The bypass ratio is the ratio of	M		1
A	mass flow rates of two streams		1	1
A	pressure ratio of inlet and exit		0	2
A	volume flow rate of inlet and exit		0	3
A	density flow rate of inlet and exit		0	4
Q	Removing the cowl from the fan gives us	M		1
A	turbojet		0	1
A	turbofan		0	2
A	turboprop		1	3
A	ramjet		0	4
Q	Why do the airplanes fly at higher altitude during the long flights?	M		1
	to avoid collisions as they are at very high speed and controlling will be difficult if			
A	something (like towers, hills) comes in the way		0	1
A	it is easy to communicate with satellites at high altitudes		0	2
A	to save the fuel as air at higher altitude exerts smaller drag force on aircraft		1	3
A	because of it's safety and control		0	4
Q	The propulsive power developed by the thrust of engine is given by	M		1
A	Mair (Vexit – Vinlet)		0	1
A	Mair (Vexit – Vinlet) × Vaircraft		1	2
A	(Vexit – Vinlet) × Vaircraft		0	3
A	Mair x Vaircraft		0	4
Q	"After-burning" in a jet engine involves burning additional fuel in the:	M		1
A	Jet pipe		1	1

A	Turbine		0	2
A	Combustion chamber		0	3
A	Compressor		0	4
Q	For which of these applications is the turboshaft engine most suited?	M		1
A	Low-speed fixed-wing aircraft		0	1
A	Helicopters		1	2
A	High altitude reconnaissance aircraft		0	3
A	High-speed combat aircraft		0	4
Q	The function of the turbine in a turbojet engine is to:	M		1
A	Vapourise the fuel as much as possible		0	1
A	Drive the gas stream into the atmosphere		0	2 3
A	Energise the gas steam		0	3
A	Drive the compressor		1	4
	In a jet propulsion unit air is drawn into the rotary compressor at 27°C and 1 bar and			
	delivered at 4 bar. The isentropic efficiency of compression is 80%. calculate the			
Q	temperature at the exit of compressor.	M		1
A	482.24 k		1	1
A	461.39 k		0	2
A	460.89 k		0	2 3
A	170.39 k		0	4
	Calculate Exit velocity of jet when the enthalpy change for the nozzle of turbojet			
Q	aircraft is 100 kJ/kg and velocity co-efficient is 0.97	M		1
A	1561.66 km/hr		1	1
A	1500.38 km/hr		0	2
A	1516.36 km/hr		0	3
A	1599.9 km/hr		0	4
Q	Euler equations govern flows.	М		1
A	Viscous adiabatic flows		0	1
A	Inviscid flows		0	2
A	Adiabatic and inviscid flows		1	3
A	Adiabatic flows		0	4
Q	Force exerted by a jet on a stationery plate happens in how many cases?	M		1

A	3 cases	1	1
A	2 cases	0	2
A	1 case	0	2 3
A	4 cases	0	4
Q A	The specific speed of a turbine is	М	1
A	N√P / H^1/4	0	1
A	N√P / H^3/4	0	2
A	N√P / H^5/4	1	2 3
A	N√P / H^7/4	0	4
	A jet water issues from a nozzle with a velocity 20 m/s and it impinges normally on a		
	flat plate moving away from it at 10 m/s. The cross-sectional area of the jet is 0.01 m2		
Q	and the density of water = 1000 kg/m3. The force developed on the plate is	М	1
A	1000 N	1	1
A	100 N	0	2 3
A	10 N	0	3
A	2000 N	0	4
	Find the diameter of jet D for pelton turbine, if jet ratio m and diameter of jet d are		
Q	given as 20mm and 200mm.	М	1
A	12	1	1
A	10	0	2 3 4
A	0.1	0	3
A	10.5	0	
<mark>Q</mark>	Buckets and blades used in a turbine are used to	М	1
A	Alter the direction of water	1	1
A	Switch off the turbine	0	2
A	To regulate the wind speed	0	2 3 4
A	To regenerate the power	0	4
Q	The width of the bucket for a pelton wheel is generally the diameter of jet	М	1
A	Double	0	1
A	Three times	0	2
A	Four times	0	2 3
A	Five times	1	4

	The number of buckets of Pelton wheel is 40 and diameter of runner is 2 meters then			
Q	calculate diameter of jet is	M		1
A	50		0	1
A	60		0	2
A	40		1	3
A	70		0 4	4
Q	Velocity triangles are used to analyze	M		1
A	Flow of water along blades of turbine		0	1
A	Measure discharge of flow		0	2 3
A	Angle of deflection of jet		0	3
A	Flow of water, measure of discharge, angle of deflection.		1 4	4
Q	Which type of turbine is used to change the velocity of the water through its flow?	M		1
A	Kinetic turbines		0	1
A	Axial flow turbines		0	2 3
A	Impulse turbines		1	3
A	Reaction turbines		0 4	4
Q	Braking jet in an impulse turbine is used	M		1
A	To break the jet of water		0	1
A	To bring the runner to rest in a short time		1	2
A	To change the direction of runner		0	3
A	To increase the speed of runner		0 4	4
Q	Which kind of turbine is a Pelton Wheel turbine?	M		1
A	Tangential flow turbine.		1	1
A	Radial flow turbine		0	2 3
A	Outward flow turbine		0	3
A	Inward flow turbine		0 4	4
	If Hg is the gross or total head and hf is the head lost due to friction, then net or			
Q	effective head(H) is given by	M		1
A	H = Hg / hf		0	1
A	H = Hg * hf		0	2
A	H = Hg + hf		0	3
A	H = Hg - hf		1 4	4

	In case of pelton wheeel, for medium speed runner the absolute angle of velocity at exit			
Q	should be	M		1
A	Less than 90 degrees		0	1
A	More than 90 degrees		0	2
A	Equal to 90 degrees		1	3
A	Equal to 180 degrees		0	4
Q	In reaction turbine function of Draft tube is to	M		1
A	Increase the rate of flow		0	1
A	Prevent air from entering		0	2
A	Reconvert the kinetic energy to flow energy		1	3
A	Provide safety to turbine		0	4
Q	A hydraulic turbine converts the potential energy of water into	M		1
A	Gravitational energy		0	1
A	Thermal energy		0	2
A	Heat energy		0	3
A	Kinetic energy		1	4
Q	In reaction turbines, the runner utilizes	M		1
A	Both kinetic energy and potential energy		0	1
A	Pressure energy		1	2
A	Potential energy		0	3
A	Kinetic energy		0	4
Q	In mixed flow turbines, the water enters the blades and comes out	M		1
A	radially, radially		0	1
A	radially, axially		1	2
A	axially, axially		0	3
A	axially, radially		0	4
	In which of the following type of runners in a Kaplan turbine the velocity of whirl at			
Q	inlet is smaller than the blade velocity?	M		1
A	Slow Runner		0	1
A	Medium Runner		0	2
A	Fast Runner		1	3
A	Such a case is practically impossible		0	4
Q	For which of the following values of available heads may Kaplan turbine be used?	M		1

A	50 m		1	1
A	100 m		0	2
A	200 m		0	2 3
A	300 m		0	4
Q	In a Kaplan turbine, what is the direction of water flow?	M		1
A	Radial and then axial		0	1
A	Tangential and then axial		0	2
A	Tangential and then radial		0	3
A	Axial and then axial		1	4
Q	Governing mechanism used in case of Pelton wheel turbine is	M		1
A	dam gates		0	1
A	nozzle needle		1	2
A	guide vane		0	3
A	Moving vane		0	4
Q	Gross head is the difference between	M		1
A	head race and net head		0	1
A	head race and friction losses		0	2
A	head race and tail race		1	3
A	net head and friction losses		0	4
Q	Hydraulic efficiency of turbine is expressed as	M		1
A	Power Developed by the runner / Net power supplied at the turbine entrance		1	1
A	Net power supplied at the turbine entrance / Power Developed by the runner		0	2
A	power available at the turbine shaft / Power Developed by the runner		0	3
A	Power Developed by the runner / power available at the turbine shaft		0	4
Q	The power which appers in the expression for the specific speed is the	M		1
A	Water Power		0	1
A	Shaft Power		1	2
A	Power inlet to the turbine		0	3
A	Friction power		0	4
Q	A pump is device which transfer	M		1
A	Heat energy into Pressure energy		0	1
A	Mechanical energy into hydrualic energy		1	2

A	chemical energy into Kinetic energy		0	3
A	pressure energy into mechanical energy		0	4
	In case of rciprocating pump the pressure energy of a fluid is increased due to of			
Q	piston	М		1
A	zero displacement		0	1
A	negative displacement		0	2
A	no displacement		0	3
A	positive displacement		1	4
Q	Centrigugal pumps areto inward flow reaction turbine but it is in action.	М		1
A	similar, reverse		1	1
A	opposite, same		0	2
A	similar, same		0	3
A	opposite, reverse		0	4
	Effiviency of reciprocating pump is about higher compared to centrifugal			
Q	pump.	М		1
A	40 to 50 %		0	1
A	80 to 90 %		0	2
A	10 to 20 %		1	3
A	60 to 80 %		0	4
	Capital cost is and maintainance cost is of reciprocating pump than			
Q	centrifugal pump	М		1
A	high, low		0	1
A	high, high		1	2
A	low, high		0	3
A	low, low		0	4
Q	Single acting pump and double acting pump are the types of	М		1
A	centrifugal pump		0	1
A	vane pump		0	2
A	jet pump		0	3
A	reciprocating pump		1	4
Q	One of the following is not a part of reciprocating pump	М		1
A	impeller		1	1

A	connecting rod	0	2
A	pistion	0	3
A	crank	0	4
	In reciprocating pumpis the reservoir of liquid through which water will be		
Q	pumped	М	1
A	water reservoir	0	1
A	well	0	
A	sump	1	3
A	pond	0	4
	single acting reciprocating pump gives discharge while the double acting		
Q	reciprocating pump gives discharge.	М	1
A	intermittent, uniform	1	1
A	uniform, intermittent	0	2
A	uniform, uniform	0	3
A	intermittent, intermittent	0	4
	In a single acting reciprocating pump, if discharge, Q is 3.09 m ³ per sec and total		
	head at the beginning of suction and delivery stroke (Hs + Hd) is 45 m then power		
Q	required to drive the pump is	М	1
A	1.36 kW	1	1
A	139.05 kW	0	2 3
A	14.56 kW	0	3
A	6.86 kW	0	4
	Calculate theorotical discharge by reciprocating pump if diameter of piston is 140 mm,		
Q	stroke length 240 mm and it runs at 48 rpm.	М	1
A	0.1773 m ³ per min	1	1
A	$2.956 \text{ m}^3 \text{ per min}$	0	2
A	0.35168 m ³ per min	0	3
A	0.0844 m ³ per min	0	4
Q	In reciprocating pump, air vessels are fitted	М	1
A	on cylinder	0	1
A	on crank	0	
A	on receiver	0	3

A	in suction and delivery pipe		1	4
Q	Priming is necessary in	М		1
A	reciprocating pump		0	1
A	centrifugal pump		1	2 3
A	both reciprocating and centrifugal		0	
A	neither reciprocating nor centrifugal		0	4
	Theorotical discharge of reciprocating pumpwith the increase of speed of the			
Q	pump.	М		1
A	increases		1	1
A	decrases		0	2
A	remain same		0	3
A	become zero		0	4
Q	Gear pumps are not used for handling	М		1
A	synthetic oil		0	1
A	petrolium oil		0	2
A	water		1	3
A	water based emulsion		0	4
Q	Theorotical discharge of a double acting reciprocating pump is given by	М		1
A	Q = 2ALN / 60		1	1
A	Q = ALN / 60		0	2 3
A	Q = 60 / 2ALN		0	3
A	Q = 60 / ALN		0	4
Q	In centrifugal pump, Priming involves	М		1
A	filling the liquid in delivery pipe		0	1
A	filling the air in suction pipe		0	2
A	filling the liquid in suction pipe		1	3
A	removing the liquid from suction pipe		0	4
Q	Following is not the type of Centrifugal pump	М		1
A	diffuser pump		0	1
A	volute pump		0	2 3
A	vortex pump		0	
A	gear pump		1	4

	In centrifugal pump, if velocity of flow (Vf1) at inlet is 4.244 m/s and tangential blade		
Q	velocity at inlet (u1) is 10.472 then inlet angle of impeller is	М	1
A	22. 06 degree	1	1
A	67.93 degree	0	2
A	2.48 degree	0	3
A	88.71 degree	0	4
	The iso-efficiency curves of centrifugal pump help to locate region where the pump		
Q	would operate at	М	1
A	constant efficiency	0	1
A	maximum efficiency	1	2
A	minimum efficiency	0	3
A	zero efficiency	0	4
Q	In hydraulic head, NPSH is used for the analysis of	М	1
A	Adiabatic expansion	0	1
A	Priming	0	2
A	Wear	0	3
A	Cavitation	1	4